• 제목/요약/키워드: coupled acoustics

검색결과 22건 처리시간 0.024초

음향적으로 결합된 공간의 잔향특성변화에 관한 연구 (A Study on the Reverberation Characteristics of Coupled Spaces)

  • 정대업;김지영;최영지
    • 한국공간구조학회논문집
    • /
    • 제8권3호
    • /
    • pp.53-63
    • /
    • 2008
  • 본 연구는 개구부를 통해 음향적으로 결합된 공간에서의 잔향특성변화를 축소모형을 이용하여 살펴보았다. 대상공간의 음향적 결합은 정방형의 개구부를 통하여 이루어졌으며, 개구부의 크기, 부실의 흡음력 및 위치를 변화시켜가며 실의 음향특성변화를 측정 분석하였다. 연구결과 동일한 체적을 가진 부실을 통해 주실의 음향특성을 조절하는 경우 부실의 흡음력을 주실보다 현저하게 낮게 하는 것이 넓은 범위의 음향조절이 가능하며, 음향특성을 단계적으로 조절하고자 하는 경우 주실보다 높은 흡음력을 가진 부실을 이용하는 것이 효과적인 것으로 나타났다. 잔향부실의 경우 음원 측에 위치시키는 것이 효과적이며, 개구율이 6.25%이상일 때부터 주실의 음장특성에 중요한 영향을 미치는 것으로 분석되었다. 그러나 개구율이 25%이상으로 증가되면 개구율 증가에 따른 주실의 유의적인 음향특성변화는 더 이상 나타나지 않았다. 흡음부실이 결합되는 경우 음원으로부터 멀리 위치시키는 것이 효과적이었으며, 개구율 3.13%이상일 때부터 주실의 음장특성변화가 가능하였다.

  • PDF

공연장에서의 가변음향에 대한 고찰 (Variable Acoustics in performance venues- A review)

  • 현진오;정대업
    • 한국음향학회지
    • /
    • 제40권6호
    • /
    • pp.626-648
    • /
    • 2021
  • 국내에서는 다양한 공연장르를 운영할 수 있는 다목적 공연장의 수요와 그에 따른 공급이 지속적으로 증가해오고 있다. 그러나 음향적인 측면에서는 다목적 활용에 대응하는 실질적인 고려가 이루어지지 않고 있으며, 많은 시행 착오를 거듭하고 있다. 본 논문에서는 다양한 장르의 공연이 한 공간에서 이루어질 수 있도록 실의 음향특성을 변경하는 방법들을 문헌고찰을 통해 살펴보았다. 실의 음향특성을 용도에 맞게 변화시키는 것을 가변음향이라고 하며, 수동 및 능동제어방식으로 구분된다. 수동제어방식은 가변흡음, 용적가변, 부가잔향실법, 그리고 캐노피 반사 등의 방식으로 구분되는 건축적인 가변방식이며, 능동제어방식은 In-line, Regenerative 그리고 Hybrid 시스템으로 전기적인 방법에 의해 제어된다. 본 연구에서는 각각의 수동제어방식들이 실제 다목적 공연장 및 다양한 장르에 적용된 사례와 그 장단점을 살펴보았다. 또한 각각의 능동제어방식이 적용된 시스템들을 살펴보고, 실제 다목적 공연장에 적용된 사례와 그에 따른 음향적 변화에 대해 알아보았다. 마지막으로 가변음향시스템을 활용한 다목적 홀의 기획 및 설계 단계에서 고려사항을 제안하였다.

Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (2): Cumulative Effects of Pressure Coupled Responses on Cavity Acoustics

  • Lee, Gil-Yong;Yoon, Woong-Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.33-41
    • /
    • 2006
  • Theoretical-numerical approach of combustion instability in a specific rocket engine is conducted with parametric response functions. Fluctuating instantaneous burning rate is assumed to be functionally coupled with acoustic pressures and have a finite or time-varying amplitudes and phase lags. Only when the amplitudes and phases of combustion response function are sufficiently large and small respectively, the triggered unstable waves are amplified.

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

유한.경계요소법을 이용한 내부음원을 갖는 닫힌 구조물의 차음 특성 해석 (The Analysis of Transmission Characteristics of Closed Structure with Internal Source Using FEM/BEM)

  • 원성규;정의봉;서영수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.318-321
    • /
    • 2005
  • In vibro-acoustic analysis, the commercial CAE tools, such as SYSNOISE, is usually used to take into account of the coupled effects of fluid acoustics and structural vibration. The acoustic field can be solved by either FEM or BEM, while the vibration field is usually solved by FEM. The interior or exterior acoustic problems with the coupled effects of the structural boundary could be solved by the commercial tools. The commercial tools, however, could not solve the problems in case that both the interior and exterior acoustic field is coupled with the structural boundary. In this paper, a realistic method based on FEM/BEM coupling scheme is presented to analyze the acoustic radiation from the internal source in a chamber to external acoustic field through elastic structural boundary. Several numerical examples are implemented to validate the developed program.

  • PDF

정상상태조건에서의 개구부로 연결된 커플룸의 음향 특성 (Room Acoustic Properties of Coupled Rooms Connected by an Aperture in the Steady State Condition)

  • 나혜중;임병덕
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.315-322
    • /
    • 2016
  • Room acoustic properties of coupled rooms connected by an aperture has been analyzed using statistical acoustic model based on the diffused sound field assumption, which has limitation in dealing with the parameters such an room geometries and non uniform absorptivity of the boundary surfaces. In order to overcome these difficulties the acoustic diffusion model has been introduced, by which distribution of the acoustic energy density can be analyzed for various shapes and wall absorptivity. In this study acoustic properties of coupled rooms connected by an aperture(e.g. door) is analyzed using acoustic diffusion equation, which is solved numerically. The mean energy densities of two rooms obtained by the diffusion model are compared with those from the statistical model. The results show good agreement for various coupling aperture sizes and absorption coefficients. For a limiting case when the partition wall is substituted by an aperture and the two rooms eventually forms a single room, results of coupled room analysis using diffusion model show good agreement with those of a single room.

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

실험적 방법에 의한 평판-공동 연성계의 음장 가시화 (Visualization of Sound Field of Plate-Cavity Coupled System by Experimental Method)

  • 김시문;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.662-668
    • /
    • 1997
  • Since the structural impedance is much greater than that of medium in the most cases, we often assume that the structure is rigid and that the structural vibration is independent of medium, i.e. we usually calculate the vibration of the structure first, and then obtain the radiation sound from it. This assumption is no longer satisfied when the structural stiffness is small or the fluid impedance is comparable to it. This situation often happens in underwater acoustics. Although many researchers have studied about structural-fluid coupling, we have difficulties in solving the problem analytically. Therefore the numerical method using powerful computation leads us to obtain the various coupling problem. To understand the physical coupling phenomena, visualization of sound field by a geometrically simple system(plate-cavity coupled system) is performed experimentally. Acoustic holographic method is used to estimate sound field.

  • PDF

The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.425-434
    • /
    • 2020
  • The present paper is concerned at investigating the effect of hydrostatic initial stress, gravity and magnetic field in fiber-reinforced thermoelastic solid, with variable thermal conductivity. The formulation of the problem applied in the context of the three-phase-lag model, Green-Naghdi theory with energy dissipation, as well as coupled theory. The exact expressions of the considered variables by using state-space approaches are obtained. Comparisons are performed in the absence and presence of the magnetic field as well as gravity. Also, a comparison was made in the three theories in the absence and presence of variable thermal conductivity as well as hydrostatic initial stress. The study finds applications in composite engineering, geology, seismology, control system and acoustics, exploration of valuable materials beneath the earth's surface.