• Title/Summary/Keyword: counter current flow

Search Result 96, Processing Time 0.024 seconds

A Study on the Performance of HCFC22 and Alternative Refrigerants in Heat Pumps (열펌프를 이용한 R22대체 혼합냉매의 성능에 관한 연구)

  • Song, Y.J.;Jung, D.G.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.69-79
    • /
    • 1998
  • This paper is concerned about the performance of HCFC22 alternative refrigerants used in heat pumps and industrial chillers. A water-to-water breadboard heat pump with counter-current heat exchangers and a hermetic compressor was built to carry out the experiments with various refrigerants. For each test, more than 40 temperatures, 4 pressures, power input, mass flow rates of the heat transfer fluids were measured. Refrigerants tested were HCFC22, R290(Propane), an azeotrope of 45%Propane/55%R134a mixture, and a nonazeotropic mixture of Calor 50. All tests were conducted under ARI test A condition. It is found that the COP and capacity of propane were 18% and 2.5% higher than those of HCFC22 while the COP and capacity of 45%Propane/55%R134a mixture were 3.5% and 5.3% higher than those of HCFC22 respectively. Also the COP and capacity of Calor 50 were 17% and 7.8% higher than those of HCFC22. Compressor discharge temperatures of alternative refrigerants were roughly $35^{\circ}C$ lower than that of HCFC22 indicating that these refrigerants are good from the view point of compressor reliability. The charging amounts for the alternative refrigerants were reduced by 40-60% as compared to that of HCFC22. Overall, it can be said that hydrocarbon containing alternative refrigerants are excellent in thermodynamic performance but should be used with considerable care due to their flammability.

  • PDF

Motion of Conductive Spherical Particle under Uniform Electric Field (평등전계에서 도전성 구형 입자의 운동)

  • Lim, Hun-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.39-47
    • /
    • 2011
  • The motion of a conductive spherical particle under uniform electric field is investigated in order to find a suitable method for removing the conducting solid impurities contained in liquid plastic. When the positive dc voltage applied to the upper electrode, the vertical up-and-down motion of a charged particle by electrostatic force is observed by a charge-coupled device (CCD) camera or a high-speed video camera. The experimental data of the static threshold voltage by which the particle starts to move toward the counter electrode in air or silicone oil are in good agreement with theoretical value. When the applied voltage is larger than the static threshold voltage, the particle motion pattern in silicone oil consists of four stages: upward motion, stopping at the upper electrode, downward motion and stopping at the lower electrode. The stopping motion on the electrode is thought to be caused by the liquid flow accompanied by the particle motion. The particle charge calculated by integrating the pulse current, which is generated by the charge exchange between the electrode and the particle, is approximately 0.1~0.25 times of the theoretical value. This study is expected to help understand the electric properties of microparticles in oil circuit breaker (OCB) and oil transformer and improve their performance and longevity.

Energy Analysis in CO2 Membrane Separation Process via Heat Integration (열통합 기법을 통한 이산화탄소 막 분리공정 에너지 해석)

  • Kim, Seong Hun;Kim, Tae Yong;Kim, Beom Seok;Cho, Hyun-Jun;Yeo, Yeong Koo
    • Plant Journal
    • /
    • v.12 no.2
    • /
    • pp.24-30
    • /
    • 2016
  • The membrane separation processes have received attention due to advantages such as compactness, modularity, ease of installation, flexibility of operation, lower capital cost and lower energy consumption. In this study, we evaluated accuracy of cross-flow, co-current and counter-current models. With the most accurate model, we identified the operating conditions of the two-stage membrane separation and examined the effects of permeance and selectivity of the membrane by simulation. Futhermore, power requirements and operating cost savings due to the introduction of the heat exchanger were investigated by applying heat exchanger network synthesis technique in the two-stage membrane separation using vapor sweep.

  • PDF

CIRCULATION AND WATER MASSES IN THE CONTINE NTAL SHELF BREAK REGION OF THE EAST CHINA SEA (동지나해 대륙붕 연변의 해수 유동과 수괴)

  • Lim Gi Bong;Fujimoto Minoru
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1972
  • Studies on the circulation and water masses in the continental shelf break region of the East China Sea are Summerized as follows : 1. The main stream of the Kuroshio flowing north-east near $29^{\circ}N\;Lat\;127^{\circ}E$ tong of the East China Sea in summer is narrow in width. Moving toward east, it becomes twice as wide in Tokora Strait, Japan. 2. In the main stream area of the Kuroshio, the surface Waters in the Upper layer (0-250m) are influenced by the coastal waters of China, and the counter current submerges under the surface water. Therefore, the mixing waters are found in its intermediate layer. 3. Water mass between Amami Island and the continental shelf of the East China Sea consists of main stream water, counter current water, gyration water and mixed water with coastal waters. 4. The maximum velocity of current in this waters was 139cm/sec. The volume transport was estimated approximately as $24.2\;\times\;10^6m^3/sec$. It was less than $33\;\times\;10^6m^3/sec$ in the region between Okinawa and continental shelf of the East China Sea. 5. Surface waters east of $29^{\circ}N\;Lat\;128^{\circ}E$ Long flows toward Amami Island, Okinawa Island, and Hachi Ju San Island, while those west of the region flow toward the Korea-strait, Cheju Island, coastal waters of Kyusyu, and the Pacific Ocean through Tokora Strait. The velocity of the current was estimated approximately as $0.3\~0.5$ miles per hour. 6. The bottom waters in the continental shelf break region flow toward the Korea Strait, Cheju Island and the coastal water of Kyusyu, while that of the continental shelf flows toward the Yellow Sea, 7, The characteristics of the Kuroshio water is changed remarkably by the mixing with the coastal water of China.

  • PDF

An analytical study on the thermal performance of multi-tube CO2 water heater (다중관형 CO2 급탕열교환기의 열적성능에 대한 해석연구)

  • Chang, Keun Sun;Choi, Youn Sung;Kim, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.23-30
    • /
    • 2016
  • In this study, the heat transfer and pressure drop characteristics were evaluated for multi-tube $CO_2$ water heaters with lengths of 4.5 m and 7.5 m. The evaluation was done using the -NTU method, and the results were compared with experimental data. Water flows through the shell side of the water heater, while $CO_2$ flows through 8 inner tubes. The heater uses a counter-current design to maximize the heat transfer efficiency. The energy balance equation describing the flows of $CO_2$ and water for each node is set up using the section-by-section method. The calculated heat transfer rates agree well with the experimental data within ${\pm}5%$ error. The outlet water temperature decreased linearly with the increase of the water flow rate. The calculated heat transfer rates agreed well with the experimental data within ${\pm}3%$ error. The results show that the heat transfer rate increases almost linearly with the increase of water flow rate or $CO_2$ inlet temperature in both the 4.5-m and 7.5-m water heaters, whereas the water outlet temperature linearly decreases with the increase of the water flow rate. The comparison of the $CO_2$ pressure drop between the calculation and experiment results shows good agreement at the high $CO_2$ flow rate within 5 % error, but the value is about 20 % higher in the experimental pressure drop at the low $CO_2$ flow rate.

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

A Study on the Damages of Head Works by the Storm Flood in the Area of Cheong Ju and Boeun -Emphasis onFactors Influenced on the Disasters and their Countermeasures- (淸州 및 報恩地方의 頭首工洪水災害에 關한 調査硏究(II) -災害原因 및 對策方案을 中心으로-)

  • Nam, Seong-Woo;Kim, Choul-Kee
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.49-55
    • /
    • 1982
  • The purpose of this study is to classify the factors influenced on the damages of head works suffered from the storm flood occurred on July 22 1980 in both Musim and Bochong rivers and to find out an integral counter measures against the causes influenced on the disaster of head works in the engineering aspect of planning, design, construction and maintenance. In this survey, number of samples was taken 25 head Works, and the counter measures against the causes of their disasters summarized was as follows, 1. In the aspect of planning a. As the flood water level after the establishment of head works is more increased than the level before setting of head works owing to having more gentle slope of river bed between the head works than nature slope of river bed. Number of head works should be reduced for the appropriate annexation of them b. In the place where head works is established on the curved point of levee, the destruction of levee becomes severe by the strong deflective current. Therefore the setting of head works on the curved point should be kept off as long as possible and in case of unavoidable circumstances the construction method such as reinforced concrete wall or stone wall filed with concrete and anchored bank revetments should be considered. 2. In the aspect of design a. As scoring phenomena at up stream is serious around the weir Where the concentration of strong current is present in such a place, up stream apron having impermeability should be designed to resist and prevent scoring. b. As the length of apron and protected bed is too short to prevent scoring as down stream bed, the design length should be taken somewhat more than the calculated value, but in the case the calculated length becomes too long to be profitable, a device of water cushion should be considered. c. The structure of protected river bed should be improved to make stone mesh bags fixed to apron and to have vinyl mattress laid on river bed together with the improvement for increasing the stability of stone mesh bags and preventing the sucked sand from the river bed. d. As the shortage of cut-off length, especialy in case of the cutoffs conneting both shore sides of river makes the cause of destruction of embankment and weir body, the culculation of cut-off length should be taken enough length based on seepage length. 3. In the aspect of design and constructions a. The overturing destruction of weir by piping action was based on the jet water through cracks at the construction and expansion joints. therefore the expansion joint should be designed and constructed with the insertion of water proof plate and asphalt filling, and the construction joint, with concaved shape structure and steel reinforcement. b. As the wrong design and construction of the weep holes on apron will cause water piping and weir destruction, the design and construction of filter based on the rule of filter should be kept for weep holes. c. The wrong design and construction of bank revetment caused the severe destruction of levee and weir body resulting from scoring and impulse by strong current and formation of water route behind the revetment. Therefore bank revetment should be designod and constructed with stone wall filled with concrete and anchored, or reinforced concrete wall to prevent the formation of water flow route behind the wall and to resist against the scoring and impulse of strong stream. 4. In the aspect of maintenance When the damaged parts occurred at head works the authorities and farmers concerned should find and mend them as soon as possible with mutual cooperation, and on the other hand public citizen should be guided for good use of public property.

  • PDF

[ $CO_2$ ] Recovery from LNG-fired Flue Gas Using a Multi-staged Pilot-scale Membrane Plant (파일럿규모의 다단계 막분리 공정을 통한 LNG 연소 배가스로부터 이산화탄소의 회수연구)

  • Kim, Jeong-Hoon;Choi, Seung-Hak;Kim, Beom-Sik;Lee, Soo-Bok;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.197-209
    • /
    • 2007
  • In this study, a multi-staged pilot-scale membrane plant was constructed and operated for the separation of $CO_2$ from LNG-fired boiler flue gas of 1,000 $Nm^3/day$. The target purity and recovery ratio of $CO_2$ required for the pilot plant were 99% and 90%, respectively. For this purpose, we previously developed the asymmetric polyethersulfone hollow fibers and evaluated the effects of operating pressure and feed concentration of $CO_2$ on separation performance[1,2]. The permeation data obtained were also analyzed in relation with the numerical simulation data using counter-current flow model[3,4]. Based on these results, we designed and prepared the demonstration plant consisting of dehumidification process and four-staged membrane process. The operation results using this plant were compared with the numerical simulation results on multi-staged membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery ratio of $CO_2$ in the final stage permeate stream were ranged from $95{\sim}99%$ and $70{\sim}95%$, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for $CO_2$ recovery from flue gas.

Long-term Relative Humidity Changes on High Temperature Days of Major Cities in Korea for the Recent 37 Years (최근 37년간 우리나라 주요도시의 고온일을 대상으로 한 상대습도의 경년변화)

  • Park, Myung-Hee;Lee, Joon-Soo;Suh, Young-Sang;Han, In-Seng;Hae, Hyun-Gun;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1671-1681
    • /
    • 2013
  • The study selected 10 regions among major Korean cities. Then the study classified the yearly change of relative humidity of those regions for 37 years based on 1996 (from 1974 to 2011) aimed at high temperature days, and examined them by stage regarding daily maximum temperature. For large cities and small cities, in general relative humidity had been likely to increase at high temperatures of $30^{\circ}C$ or over before 1996, whereas it has decreased since 1996. For suburban areas, relative humidity had been prone to diminish before 1996, whereas it has been likely to either increase since 1996 or rarely some of the cities have not shown any change. The increasing tendency of relative humidity before 1996 in large cities and small cities is believed to be because of an increase of the latent heat of vaporization by the supply of steam from cooling towers established in downtown areas. Meanwhile, the decreasing tendency from 1996 is concluded to be caused by the change from counter-current circular cooling towers, which produce a great quantity of steam including arsenic acid, to cross-flow cooling towers, which produce hardly any steam containing arsenic acid. This change was in accordance with the modification and pursuit of an urban planning law that ordered cooling towers that had been installed on rooftops be installed in the basement of buildings in consideration of a "Green network creation" project by the Ministry of Environment, urban beautification, concerns since 1996 over building collapses, and according to an argument that steam containing arsenic acid could be harmful to human health owing to chemicals contained in the water in the cooling tower in summer.

Direction of Development of Reaction to Bio-terrorism (생물테러리즘 대응을 위한 기술적 측면의 발전방향)

  • Lee, Kwang-Iyeol;Kim, Chang-Ho
    • Korean Security Journal
    • /
    • no.14
    • /
    • pp.311-336
    • /
    • 2007
  • This study examines the concepts of counter-act against the Bio-terrorism and the reaction system in advanced countries, thereby to find out reaction system necessary to Korea. Acts on anti-Bio-terrorism is divided to detection stage, protection stage, diagnosis stage and detoxication and neutralization stage according to flow of event occurrence. As for detection stage, Korea is developing it as contact type, while advanced countries are under development of the devices that may detect the terrorism from the remote distance. It is necessary for Korea to develop the remote-distant detection system as well as the contact type of device that may promptly operate. Among the protection gears, the quality of Korea's gas mask is recognized worldwide, but that of other outfits should be improved by applying the state-of-art science technology. The diagnosis device also should be developed to the extent that the dispatched initial action team may make immediate decisions necessary in the field. As the current trends for detoxication materials worldwide require the improvement to new materials harmless to human body and equipment, Korea is also required to acquire those materials. The technology for neutralization means the development of vaccine and antibiotics and it requires the development made by shared efforts worldwide. For this purpose, it is necessary to further develop Korea's medical technology. In addition, the further efforts are required in terms of reaction manual, training model, public communication efforts and preparation for trauma syndrome.

  • PDF