• 제목/요약/키워드: countably approximating frame

검색결과 3건 처리시간 0.017초

LINDELÖFICATION OF FRAMES

  • Khang, Mee Kyung
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.87-100
    • /
    • 2007
  • We introduce a concept of countably strong inclusions ${\triangleleft}$ and that of ${\triangleleft}-{\sigma}$-ideals and prove that the subframe $S({\triangleleft})$ of the frame ${\sigma}IdL$ of ${\sigma}$-ideals is a Lindel$\ddot{o}$fication of a frame L. We also deal with conditions for which the converse holds. We show that any countably approximating regular $D({\aleph}_1)$ frame has the smallest countably strong inclusion and any frame which has the smallest $D({\aleph}_1)$ Lindel$\ddot{o}$fication is countably approximating regular $D({\aleph}_1)$.

  • PDF

Stably 가산 근사 Frames와 Strongly Lindelof Frames

  • 이승온
    • 한국수학사학회지
    • /
    • 제16권1호
    • /
    • pp.63-72
    • /
    • 2003
  • This paper is a sequel to [11]. We introduce $\sigma$-coherent frames, stably countably approximating frames and strongly Lindelof frames, and show that a stably countably approximating frame is a strongly Lindelof frame. We also show that a complete chain in a Lindelof frame if and only if it is a strongly Lindelof frame by using the concept of strong convergence of filters. Finally, using the concepts of super compact frames and filter compact frames, we introduce an example of a strongly Lindelof frame which is not a stably countably approximating frame.

  • PDF

COUNTABLY APPROXIMATING FRAMES

  • Lee, Seung-On
    • 대한수학회논문집
    • /
    • 제17권2호
    • /
    • pp.295-308
    • /
    • 2002
  • Using the Countably way below relation, we show that the category $\sigma$-CFrm of $\sigma$-coherent frames and $\sigma$-coherent homomorphisms is coreflective n the category Frm of frames and frame homomorphisms. Introducting the concept of stably countably approximating frames which are exactly retracts of $\sigma$-coherent frames, it is shown that the category SCAFrm of stably countably approximating frames and $\sigma$-proper frame homomorphisms is coreflective in Frm. Finally we introduce strongly Lindelof frames and show that they are precisely lax retracts of $\sigma$-coherent frames.