• Title/Summary/Keyword: cotyledon culture

Search Result 119, Processing Time 0.026 seconds

Establishment of an Efficient Agrobacterium Transformation System for Eggplant and Study of a Potential Biotechnologically Useful Promoter

  • Claudiu Magioli;Ana Paula Machado da Rocha;Pinheiro, Marcia-Margis;Martins, Gilberto-Sachetto;Elisabeth Mansur
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • An efficient and reliable Agrobacterium transformation procedure based on TDZ (thidiazuron)-induced organogenesis was established and applied to six Brazilian eggp1ant varieties. Optimum transgenic plants recovery was achieved upon the study of the following parameters affecting transformation efficiency, using F-100 variety as a model: i) explant source; ii) pre-culture period; iii) physical state of the pre-culture medium and iv) coculture conditions. The highest frequency of kanamycin-resistant calli derived from leaf explants (5%) was obtained without a pre-culture period and co-cultivation for 24 h in liquid medium followed by five days on solid RM (regeneration medium). For cotyledon explants, best results were achieved upon a pre-culture of 24 h in liquid RM and a co-cultivation period of 24 h in liquid RM followed by three days in solid RM, resulting in a transformation Sequency of 22.7%. Kanamycin-resistant organogenic calli were also obtained from cultivars Emb, Preta Comprida, Round nose Shaded, Campineira and Florida Market. The expression pattern of an epidermis-specific promoter was studied using transformants expressing a chimaeric construct comprised by the promoter Atgrp-5 transcriptionally fused to the coding region of the gus gene. The expression pattern was similar to that previously observed in tobacco and Arabidopsis thaliana, with preferential expression at the epidermis and the stem phloem. These results support the idea that the Atgrp-5 promoter can be used to drive defense genes in these tissues, which are sites of pathogen interaction and spread, in programs for the genetic improvement of eggplant.

  • PDF

Factors Influencing Somatic Embryo Induction and Plant Regeneration in Aralia elata Seem. (두릅(Aralia elata)의 체세포배 유도, 발아 및 식물체 재분화에 미치는 요인)

  • 문흥규;오경은;손성호
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.275-280
    • /
    • 1999
  • In order to find optimum conditions for somatic embryogenesis from different individual (2-year-old) in Aralia elata were cultured on MS medium supplemented with 1.0 mg/L 2,4-D, 3% sucrose, and 0.3% gelrite. We also investigated the effect of MS medium salt concentration, BA and ABA on the embryo germination and plant regeneration. While noticeable difference was observed on somatic embryo induction among different individual tree, no apparent difference was seen in both germination and regeneration frequencies. Compared with nonembryogenic calli, embryogenic calli tended to look yellow and/or pale brown in color, slowly growing and soft in their texture. Regardless of BA or ABA treatment, half-strength MS salt medium proved to be better than full strength MS medium in both embryo germination and plant regeneration. Both hypocotyl and cotyledon developments were slightly promoted by adding 0.1 mg/L BA. However, its effect on germination and regeneration seemed inferior to control. ABA treatment on somatic embryos at their torpedo and early cotyledonary stages resulted in poor response in germination and regeneration. Although most regenerated plantlets varied greatly in cotyledon number and shape, they could be developed into normal plants after 4 weeks in culture. More than 95% plantlets were acclimatized in an artificial soil mixture, successfully transplanted to nursery bed and grew normally without any phenotypic abnormalty.

  • PDF

REDIFFERENTIATION FROM TISSUE CULTURE AND ISOLATION OF VIABLE PROTOPLASTS IN PANAX GINSENG C.A. MEYER (고려인삼의 조직배양에 의한 기관형성과 원형질체배양에 관한 연구)

  • Choi Kwang-Tae;Yang Deok-Chun;Kim Nam-Won;Ahn In-Ok
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.1-11
    • /
    • 1984
  • Ginseng cotyledon calli were cultured on 1/2MS media supplemented with combination of various growth regulators to induce more embryoids and plantlets in a short period. And tissues of ginseng root and calli were also incubated under various factors or conditions to establish methods for the isolation of viable protoplasts in Panax ginseng C.A. Meyer. The calli derived from cotyledon produced numerous embryoids in 1/2MS media containing 0.5mg/$\ell$ 2,4-D and 0.5mg/$\ell$ kinetin after 2 months' culture. But only shoot formation was less frequent. Further development of these embryoids occurred on 1/2MS medium supplemented with the same concentration of BA and GA. Viable protoplasts were isolated from the root tissue and callus of ginseng. The specific conditions for the isolation of viable protoplasts were required of ginseng materials, root tissue and callus, being processed. For the production of viable protoplasts from 1-year old ginseng root tissue, an enzyme mixture of $2\%$ cellulase 'Ono-zuka' and $0.5\%$ macerozyme, an enzyme solution pH of 5.2 to 5.8, a 7- to 8- hour incubation period at $28{\pm}1^{\circ}C$, and 0.9M mannitol as osmoticum in the cell enzyme mixture were optimum, while the treatments with an enzyme mixture of $2\%$ cellulase 'Onozuka', $2\%$ macerozyme and $1\%$ driselase, and 25-hour incubation period at $28{\pm}1^{\circ}C$, were more efficient for the production of viable protoplasts from ginseng callus.

  • PDF

Changes in Growth and Morphological Characteristics of Soybean Sprouts in Response to Agitation of Culture Box (재배통의 흔들음 정도에 따른 콩나물의 생장과 형태 변화)

  • Hong Dong-Oh;Lee Chang-Woo;Kim Hong-Young;Kim Hee-Kyu;Kang Jin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.199-203
    • /
    • 2006
  • The marketability of soybean sprout mainly depends on shape such as hypocotyl thickness and presence of lateral root formation, etc. To clarify the effects of agitating culture box on growth and shape of soybean sprouts, different agitation frequency (0, 3, 5 times day-1) and duration (0, 1, 2, 3 days) were applied during sprout cultivation. More frequent and longer agitation resulted in less lateral root formation and shorter hypocotyl length, while total lengths were not affected by agitation due to agitation-induced root length increment. Agitation also increased the diameter of hypocotyl's hook pin, but not the middle part. Unlike morphological characteristics, the growth of sprouts as measured by fresh and dry weight of cotyledon, hypocotyl, root were not affected by agitation. In conclusion, it is very likely that agitating culture box during sprout cultivation may alter the shape of soybean sprouts without affecting growth of sprouts.

Callus Formation and Rooting of Inbred Lines of Chinese Cabbage (Brassica campestris ssp. perkinensis) Though Protopalst Culture (원형질체 배양을 통한 배추 〔Brassica campestris ssp. perkinensis〕캘러스 형성 및 뿌리분화)

  • 염옥희;전익조;김혜진;백남권;임학태
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.3
    • /
    • pp.153-157
    • /
    • 2001
  • Protoplasts were isolated from hypocotyls, cotyledons, and young leaves of Chinese cabbage grown under in vitro environmental condition. An enzyme mixture of 1% Cellulysin and 0.5% Macerozyme in combination with 0.4 M mannitol was most effective condition for protoplast isolation. The highest yield of protoplasts, 7.6$\times$10$^{5}$ protoplast/g of fresh weight, was obtained from the treatment of leaves for 12~16 hours at 27~28$^{\circ}C$ with shaking at 30 rpm. The most suitable medium for an initial cell division was K8p basal medium supplemented with 5 mg/L 2,4-D and 2 mg/L kinetin. Within 7~10 days, protoplasts derived from hypocotyl and cotyledon tissues formed cell colonies. When the cells were grown at the size of 8~10 cells, they were embedded into semi-solid medium containing 0.2% agarose. Calli derived from protoplast culture were transferred to the 100 different types of plant regeneration media, but no completely regenerated plants from inbred lines of Chinese cabbage used for this study wore obtained, though frequent rooting took place in several media tested.

  • PDF

Somatic Embryogenesis - Apical Meristems and Embryo Conversion

  • Yeung, Edward C.;Stasolla, Claudio
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.299-307
    • /
    • 2000
  • A large amount of information is currently available for somatic embryogenesis of plants. However, one common problem related to somatic embryos is that the conversion rate can be low for some species. Apical meristems are responsible for post-embryonic growth of the embryo. The low percentage observed is most likely a result of poor apical meristem development or defects in the meristem organization during somatic embryogenesis. In flowering plants, apical meristems are well developed by the late heart stage of zygotic embryo development. In conifers, such as white spruce, apical meristems are formed at the pre-cotyledon stage. Thus, apical meristem development occurs very early, prior to the maturation stage of embryo development. Once formed, meristems are stably determined. In the somatic embryo, as exemplified by white spruce, since embryo development is not synchronous, tissue differentiation including apical meristem formation occurs throughout the“maturation”stage. Different apical meristem organizations can be found among different individuals within a population. In contrast to their zygotic counterparts, the apical meristems appear not to be stably determined as their organization, as the shoot apical meristem especially, can be easily modified or disrupted. Precocious germination seldom results in functional plantlets. All these observations suggest that the conditions for somatic embryo maturation have not been optimized or are not suitable for meristem formation and development. The following strategies could improve meristem development and hence conversion: 1. Simulate in ouuio conditions to promote meristem development prior to the“maturation”treatment.2. Prevent deterioration of apical meristem organization during somatic embryo maturation.3. Promote further meristem development during embryo germination.

  • PDF

Genetic Transformation of Panax ginseng with Herbicide Resistant Gene (제초제 저항성 유전자에 의한 인삼의 형질전환)

  • 양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.6
    • /
    • pp.353-357
    • /
    • 2001
  • Transformation of ginseng plants was achieved by biolistic system with cotyledon explants and callus using phosphinothricin acetyl-transferase (PAT) gene resisting to a herbicide of Bialaphos. The binary vector for transformation was constructed with disarmed Ti-plasmid and with double 355 promoter. The introduced NPT II and PAT genes of the transgenic ginseng plants were successfully identified by the PCR, and the survival test on the medium with basta. The transgenic ginseng plants were propagated using repetitive secondary embryogenesis. The transgenic ginseng plantlets had normal structures of roots and shoots, and dormant buds for new year sprouting. We transferred the transgenic plants to greenhouse and observed the continuing growth until a new year.

  • PDF

Colletotrichum Disease of Mungbean Sprout by Colletotrichum acutatum

  • Kim, Dong-Kil;Lee, Sun-Chul;Kang, Jin-Ho;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.19 no.4
    • /
    • pp.203-204
    • /
    • 2003
  • Decayed samples of marketed mungbean sprout were collected from Sacheon, Suncheon, and Dangjin cities in Korea. Initial symptom on hypocotyls was dark-brown diamond speck, which developed into enlarged sunken brownish-black spot with irregular margin, followed by softening yellowish decay. Brown speck on cotyledon further developed into irregular lesions. This study isolated the fungus Colletotrichum sp. The fungal colony was pale orange, which turned greenish gray after 1 week at $25^{\circ}C$. Colony of reverse side in a petri dish was pink. Neither conidiomata nor setae were present in the culture. Typical fusiform conidia sized 7.5-15.0$\times$2.5-2.9 $\mu\textrm$were hyaline, aseptate, smooth, and had salmon color in mass. Conidiogenous cells were phialidic, hyaline, smooth, and cylindrical with terminal distinct collarette. Basedon these mycological characteristics, the casual organism was identified as Colletotrichum acutatum. This is first report of Colletotrichum acutatum in Korea.

Genetic Transformation of Lettuce (Lactuca sativa L.) with Agrobacterium tumefaciens (Agrobacterium tumefaciens에 의한 상추 (Lactuca sativa L.)의 형질전환)

  • 최언옥;양문식;김미선;은종선;김경식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.55-58
    • /
    • 1994
  • Agrobacterium tumefaciens LABA4404 harboring plant binary vector, pBI121, was used for genetic transformation of lettuce (Lactuca sativa t.). Cotyledon segments were infected with A. tumefaciens LBA4404 by cocultivation method and regenerated. Regenerated letture was subject to molecular analyses for integration into plant nuclear genome and expression of ${\beta}$-glucumnidase (GUS) gene. Southern and Northern blot analyses demonstrated that GUS gene was integrated into plant nuclear genome and expressed into its mRNA. The expression of GUS gene into its protein was confirmed by specetrophotometric assay of GUS activity.

  • PDF

Changes in Specific Protein Profiles during Initiation of Adventitious Roots in Soybean (Glycine max L.) Cotyledons (대두 (Glycine max L.)의 자엽 부정근 형성시 특이단백질의 변화 양상)

  • 한태진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 1994
  • The potency of adventitious root initiation was investigated in relation with germination days and ike end of culture days healed with root induction medium on the initiation of adventitious roots from explants of soybean (Glycine max L.) cotyledon. Also, the changes in the pattern of protein profiles related with adventitious mot initiation have been examined by two-dimensional polyauyl-amide gel elecoophoresis during the germination and the initiation of adventitious roots. The potency of adventitious root initiation from germinated cotyledons was high after 4 days, and adventitious roots were initiated from after 4 days and very high after 6 days healed with mot induction medium There was a reproducible quantitative change in 34 specific protein spots during germination and adventitious root initiation. A necessary basic protein for adventitious root initiation with rotative molecular weight of 27 kD was induced during the germination. And three basic protein groups with relative molecular weight 22 kD, 23 kD and 33 kD, and two acidic protein groups with relative molecular weight 27kD and 29 kD were induced during the initiation of adventitious roots.

  • PDF