• 제목/요약/키워드: cotton fabric innovation

검색결과 2건 처리시간 0.013초

Research of a new tie-dyeing tool based on 3D printing technology

  • Tu, Dan Dan;Kim, Sohyun
    • 복식문화연구
    • /
    • 제30권1호
    • /
    • pp.161-171
    • /
    • 2022
  • Traditional tie-dyeing is widely implemented in the clothing handicraft culture in China, South Korea, and Japan. Since it was developed 2,000 years ago, it has become a popular method of fabric making in the world and is highly respected by fashion designers. Based on the existing traditional tie-dyeing methods, this study conducted specific research on the 3D printing technology of the SLS laser method and the micro tool design application method of the clamp-dyeing process. Through the experimental methods of this study, it proposes to use the "7000 Nylon" material, which is commonly used in 3D printing, to develop a new clamp-dyeing tool. This new tool can be widely used in the clamp-dyeing of fabrics, such as cotton, hemp, silk, and some chemical fibers. The applied method and principle can be consistent with the traditional clamp-dyeing method. Therefore, the innovation of tie-dyeing technology is the best protection measure for the development and inheritance of traditional fabric making. The continuation of artistic life needs originality, which is also the best response to market competition. At the same time, this new design of the clamp-dyeing tool has the characteristics of novelty, innovation, and rich changes, which aligns with the new fashion demands of current fabric design.

Production of multipurpose cotton fabrics to improve the quality of aerobic and dance sportswear

  • Mingfa Gao;Bin Long
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.165-173
    • /
    • 2024
  • The production of multipurpose cotton fabrics aimed at elevating the quality of aerobic and dance sportswear is explored in this study. Powder metallurgy, known for its high efficiency in manufacturing technological components with minimal waste, is employed as a method for fabricating brush ferrules for painting. The utilization of iron-copper material, prepared through powder metallurgy, enhances the strength and quality of the brush ferrules. A microscopic analysis reveals a robust interconnection between the particles of each layer achieved through isostatic pressure, resulting in a favorable microstructure. The relative density and strength of parts produced from copper-iron powder exhibit an increase with higher pressure levels. The application of this material in brush ferrules ensures their durability and longevity, thereby supporting the creation of artwork. The evolution of art over time reflects changing ideas and possibilities, and technological advancements have significantly improved artistic tools. The role of tools in artistic expression is paramount, and the integration of powder metallurgy materials in brush ferrules fortifies their artistic importance. In summary, this study underscores the advantages of powder metallurgy in augmenting the quality of art tools and facilitating artistic creation.