• Title/Summary/Keyword: cotton cellulose

Search Result 144, Processing Time 0.022 seconds

A Study of the Cationization of Bamboo-cotton Blended Fabric (대나무-면 복합직물의 양이온화에 관한 연구)

  • Noh, Young-Ju;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.2
    • /
    • pp.260-266
    • /
    • 2022
  • Cellulose fiber is a material used in various fields. It is the most used type of fiber because of its excellent hygroscopicity and dyeability. Recently, as natural fiber materials have been highlighted due to the influence of eco-friendliness and well-being, bamboo fiber has become a commonly used eco-friendly fiber. Cellulose fibers are part of the -OH hydroxyl group, which means they are more chemically reactive than synthetic fibers. In this study, the cationization properties of bamboo-cotton blended fabrics cationized using CHPTAC (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) in the PDC (padding-drying-curing) method were investigated. Various characteristics according to cationization were studied through elemental analysis, FT-IR (fourier-transform infrared spectroscopy) analysis, X-ray diffraction analysis, TGA (thermogravimetric) analysis, and SEM (scanning electron microscope) analysis. The nitrogen content of the cationized bamboo-cotton blended fabric increased with an increase in the concentration of the cationizing agent CHPTAC, and it was seen to be highly bound to cellulose molecules. As a result of the FT-IR analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics were seen to be typical cellulose. As a result of the X-ray diffraction analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics showed typical cellulose I structures. As a result of the X-ray diffraction analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics showed typical cellulose I structures. As the cationization progressed, micropores appeared on the surface of the blended fabric.

Degardatrion of Cellulosic Fibers by Electron Beam Irradiation

  • Han, Sung-Ok;Seo, Yung-Bum;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.20-25
    • /
    • 2007
  • Henequen fibers were treated by electron beam irradiation and by NaOH to make surface modification for better bonding in the manufacture of biocomposite. Impurity removal and carbonyl group formation were noticed in the previous study by electron beam irradiation, but extensive cellulose degradation were also noticed. To evaluate the effects of electron beam irradiation on cellulosic fibers further, henequen fibers, cotton pulp, cotton fibers, and cellophane were irradiated by electron beam, and their changes of cellulose viscosity, chemical composition, and tensile strength were measured and analyzed.

Studies of Purifying Waste Cotton for Esterification & Molecular Weight Distribution Curve of Cellulose Acetate (落綿의 精製 및 이를 原料로 하는 醋酸纖維素의 分子量 分配曲線에 關한 硏究)

  • Kim, Dong-Il;Noh, Ick-Sam
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 1957
  • Purified cellulosic materials suitable for the production of cellulose esters can be prepared from waste cotton (carding waste from textile mill). The most desirable conditions in purifying waste cotton were obtained. Waxy materials were removed by boiling in 2-3% soda ash solution for more than 30 minutes in open vessel at atmospheric pressure. As for bleaching, it is desirable to use the bleaching powder solution containing 1%, available chlorine for 60 minutes at 35 deg. C. Purified cellulosic material was acetylated to fibrous cellulose triacetate, which was fractionated in the solution of 70% monochloroacetic acid using water as a precipitant, and the degree of polymerizaion and molecular weight of each fraction were measured viscometrically, thereon, molecular weight distribution curve was drawn. Analyzing the shape of this curve, most of the polymers were concentrated on the part of higher degree of polymerization. Purified waste cotton was also analysed, the result was that this cellulosic material can be used as a raw material for cellulose esters and ethers.

  • PDF

Hydrolysis of Non-cellulose of Cotton Fiber by Lipase Treatment (리파제를 이용한 면직물 비셀룰로스 가수분해)

  • Lee, So-Hee;Song, Wha-Soon;Kim, Hye-Rim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.7
    • /
    • pp.1075-1081
    • /
    • 2008
  • Eco-friendly processing using enzymes has been focused in textile industry in order to reduce environmental pollutions. This paper was suggested to hydrolyze non-cellulose, such as fats and waxes in cotton fabrics by lipase treatment. Enzymatic treatment conditions were controlled according to pH, temperature, enzyme concentration, and treatment time. The physical properties of the lipase-treated cotton fabrics were evaluated by measuring weight loss, moisture regain and dyeing properties. The surface morphology of lipase-treated cotton fabrics were observed by SEM. As a result, the optimum conditions for the lipase treatment were at pH 4.2, temperature 50$^{\circ}C$, concentration 50%, and treatment time 90 minutes. Calcium chloride and Triton X-100 were effective auxiliaries in lipase treatment.

Improvement in Dissolution of Cellulose with Ionic liquid by the Electron Beam Treatment (이온성 액체의 셀룰로오스 용해성 개선을 위한 전자빔 처리 효과)

  • Lee, Won-Sil;Jung, Wong Gi;Sung, Yong Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.56-65
    • /
    • 2013
  • Electron beam treatment was applied for improving dissolution of cellulose with ionic liquids. Two ionic liquids, 1-allyl-3-methylimidazolium chloride ([Amim]Cl]: AC) and 1,3-dimethylimidazolium methylphosphite ([Dmim][$(MeO)(H)PO_2$]: Me) were used for this experiment. Treatment with electron beams up to dose of 400 kGy resulted in the increase of hot water extract and alkali extract of cotton pulp and the great reduction in the molecular weight of cellulose. For the dissolution of cotton pulp with two ionic liquids, the electron beam treated samples showed faster dissolution. The dissolved cellulose with Me ionic liquid were regenerated with acetonitrile and the structure of regenerated cellulose showed distinct difference depending on the electron beam treatment. Those results provide the electron beam pre-treatment could be applied as an energy efficient and environmentally benign method to increase the dissolution of cellulose with ionic liquids.

Durable Press Finishing of Silk/Cotton Fabrics with BTCA (3) - The Study of Ester Crosslinkages of Silk/Cotton Fabrics Treated with BTCA by FT-IR Spectroscopy - (BTCA에 의한 실크/면 교직물의 DP 가공 (3) - FT-IR 분광법에 의한 BTCA 처리 실크/면 교직물의 에스테르 가교 평가 -)

  • Cho, Seok-Hyun;Kim, Yong;Park, Jong-Jun;Lee, Moon-Chul
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • Fourier transform infrared spectroscopy(FT-IR) was used to characterize the intermolecular ester crosslinkages in cotton cellulose. The FT-IR data show that the band of the ester carbonyl group can be separated from overlapping carboxyl/carbonyl band by converting carboxyl group to carboxylate. When esterification occurs between a polycarboxylic acid and cotton cellulose, the carbonyl groups retained in the cotton exist in three forms; ester, carboxyl, and carboxylate anion. The FT-IR data were also correlated to the durable press rating result obtained. The appearance of BTCA-finished durable press silk/cotton fabrics were improved.

Retardation of Degradation in Accelerated Aging of Cotton Cellulose Using Borohydride Reduction

  • Kim, Hye-Kyung;Choi, Hyung-Min
    • International Journal of Human Ecology
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Degradation of cellulose during prolonged exposure in atmospheric conditions has been recognized as one of main problems in preserving cellulose-made products. The purpose of this research was therefore to study effects of borohydride reduction in improving both the color and strength retention of cotton fabrics artificially aged at temperatures ranging from $100^{\circ}C$ to $150^{\circ}C$. Results indicated that the fabrics treated with either sodium or tetramethylammonium borohydrides (TMA) were degraded at rates about one-half that of water-washed cotton. These results were consistent over the temperature range. Calculation of the activation energy (Ea) by different methods showed $Ea\;=\;25.5{\pm}\;1.5\;Kcal$, in keeping with measurements made by others at lower temperatures. The TMA-treatment was effective in minimizing discoloration of the fabrics with pre-baking, but not of the un-prebaked fabrics.

The Dyeing Properties of Mugwort(Artemisia princeps) Extract using Nano-cellulose (나노셀룰로스를 활용한 쑥 추출물의 염색성)

  • Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.142-149
    • /
    • 2020
  • The purpose of this study was to investigate the dyeing properties of mugwort extract by nano-cellulose(n-cell). When dyeing cotton, rayon(artificial silk, called Ingyeon) and silk with mugwort extract, the difference with and without 2 wt% n-cell which it diluted to 0.6% treatment was compared. It was found that the addition of n-cell changed the values of L, -a(+red ~ -green), and b(+yellow ~ -blue) of all scoured cotton, rayon and silk fabrics, compared to dyeing only mugwort extract. Furthermore, it was confirmed that the ΔE and the K/S value slightly increased in all of the dyed cotton, rayon, and silk fabrics treated with n-cell at the same time as dyeing compared to the untreated ones. Therefore, by treating the fabric with n-cell, a natural cellulose component, at the same time as dyeing, it is expected to maintain stable fastness, which is a disadvantage of dyeing using natural dyes, and contribute to the utilization and commercialization of other natural dyes.

Study of cotton linter pre-treatment process for producing high quality regenerated fibers for fabrics (방직용 고품질 재생섬유 제조를 위한 면린터 전처리공정에 관한 연구)

  • Park, Hee Jeong;Han, Jung Su;Son, Ha Neul;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • Cotton linter pre-treatment methods using electron beam and sulfuric acid were investigated to prepare high quality regenerated fibers for fabrics. So far, NaOH was used to reduce the degree of polymerization (DP) of the cotton linter for ease of dissolving by cellulose solvent. Two pre-treatment methods were developed to reduce the consumption of the chemicals (NaOH) and to control the DP of cellulose more precisely. Changes in ${\alpha}$-cellulose contents and brightness by the pre-treatments were also important concerns. Both electron beam irradiation and sulfuric acid were shown to be effective on controlling the DP of cellulose and to reduce the chemical consumption, but reduced ${\alpha}$-cellulose contents as well in this study. Sulfuric acid pre-treatment, which needed additional washing process after the pre-treatment when comparing to the electron beam irradiation method, gave the highest brightness and the highest reduction of ${\alpha}$-cellulose content.

Physical Properties and Dyeability of Cotton Fabrics Treated with Liquid Ammonia (액체암모니아 처리 면직물의 물성 및 염색성)

  • Jeon, Sung-Ki;Lee, Chang-Soo;Im, Yong-Jin;Lee, Chung;Kim, Tae-Kyung;Lee, Hye-Jung
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • It is generally known that cotton treated with liquid ammonia has better soft handle, wrinkle recoveries and stability of appearance as compared with the alkali mercerized cotton. In this study, the various cotton fabrics treated with liquid ammonia$(NH_3)$, sodium hydroxide(NaOH) and sodium hydroxide(NaOH)/liquid ammonia$(NH_3)$ and untreated cotton fabric were investigated and compared in terms of physical properties and dyeing behavior. As the result, the strength of four kinds of cotton fabrics were similar. But the elongation of cotton treated with liquid ammonia increased slightly. Liquid ammonia treatment reduced the crystallinity of cotton and the crystalline structure of cotton transformed from cellulose 1 to mixed structure of celluloseIand III. In dyeing, dyeing rate decreased but equilibrium dye uptake increased by liquid ammonia treatment of cotton fabrics.