• Title/Summary/Keyword: cotA laccase

Search Result 2, Processing Time 0.016 seconds

Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis Spores

  • Park, Jong-Hwa;Kim, Wooil;Lee, Yong-Suk;Kim, June-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1383-1390
    • /
    • 2019
  • In this study, we expressed cotA laccase from Bacillus subtilis on the surface of B. subtilis spores for efficient decolorization of synthetic dyes. The cotE, cotG, and cotY genes were used as anchoring motifs for efficient spore surface display of cotA laccase. Moreover, a $His_6$ tag was inserted at the C-terminal end of cotA for the immunological detection of the expressed fusion protein. Appropriate expression of the CotE-CotA (74 kDa), CotG-CotA (76 kDa), and CotY-CotA (73 kDa) fusion proteins was confirmed by western blot. We verified the surface expression of each fusion protein on B. subtilis spore by flow cytometry. The decoloration rates of Acid Green 25 (anthraquinone dye) for the recombinant DB104 (pSDJH-EA), DB104 (pSDJH-GA), DB104 (pSDJH-YA), and the control DB104 spores were 48.75%, 16.12%, 21.10%, and 9.96%, respectively. DB104 (pSDJH-EA) showed the highest decolorization of Acid Green 25 and was subsequently tested on other synthetic dyes with different structures. The decolorization rates of the DB104 (pSDJH-EA) spore for Acid Red 18 (azo dye) and indigo carmine (indigo dye) were 18.58% and 43.20%, respectively. The optimum temperature for the decolorization of Acid Green 25 by the DB104 (pSDJH-EA) spore was found to be $50^{\circ}C$. Upon treatment with known laccase inhibitors, including EDTA, SDS, and $NaN_3$, the decolorization rate of Acid Green 25 by the DB104 (pSDJH-EA) spore decreased by 23%, 80%, and 36%, respectively.

Engineering CotA Laccase for Acidic pH Stability Using Bacillus subtilis Spore Display

  • Sheng, Silu;Jia, Han;Topiol, Sidney;Farinas, Edgardo T.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.507-513
    • /
    • 2017
  • Bacillus subtilis spores can be used for protein display to engineer protein properties. This method overcomes viability and protein-folding concerns associated with traditional protein display methods. Spores remain viable under extreme conditions and the genotype/phenotype connection remains intact. In addition, the natural sporulation process eliminates protein-folding concerns that are coupled to the target protein traveling through cell membranes. Furthermore, ATP-dependent chaperones are present to assist in protein folding. CotA was optimized as a whole-cell biocatalyst immobilized in an inert matrix of the spore. In general, proteins that are immobilized have advantages in biocatalysis. For example, the protein can be easily removed from the reaction and it is more stable. The aim is to improve the pH stability using spore display. The maximum activity of CotA is between pH 4 and 5 for the substrate ABTS (ABTS = diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate). However, the activity dramatically decreases at pH 4. The activity is not significantly altered at pH 5. A library of approximately 3,000 clones was screened. A E498G variant was identified to have a half-life of inactivation ($t_{1/2}$) at pH 4 that was 24.8 times greater compared with wt-CotA. In a previous investigation, a CotA library was screened for organic solvent resistance and a T480A mutant was found. Consequently, T480A/E498G-CotA was constructed and the $t_{1/2}$ was 62.1 times greater than wt-CotA. Finally, E498G-CotA and T480A/E498G-CotA yielded 3.7- and 5.3-fold more product than did wt-CotA after recycling the biocatalyst seven times over 42 h.