• 제목/요약/키워드: cosmology:dark matter

검색결과 32건 처리시간 0.019초

FAR-IR GALACTIC EMISSION MAP AND COSMIC OPTICAL BACKGROUND

  • Matsuoka, Y.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.353-356
    • /
    • 2012
  • We present new constraints on the cosmic optical background (COB) obtained from an analysis of the Pioneer 10/11 Imaging Photopolarimeter (IPP) data. After careful examination of the data quality, the usable measurements free from the zodiacal light are integrated into sky maps at the blue (${\sim}0.44{\mu}m$) and red (${\sim}0.64{\mu}m$) bands. Accurate starlight subtraction was achieved by referring to all-sky star catalogs and a Galactic stellar population synthesis model down to 32.0 mag. We find that the residual light is separated into two components: one component shows a clear correlation with the thermal $100{\mu}m$ brightness, whilst the other shows a constant level in the lowest $100{\mu}m$ brightness region. The presence of the second component is significant after all the uncertainties and possible residual light in the Galaxy are taken into account, thus it most likely has an extragalactic origin (i.e., the COB). The derived COB brightness is ($(1.8{\pm}0.9){\times}10^{-9}$ and $(1.2{\pm}0.9){\times}10^{-9}\;erg\;s^{-1}\;cm^{-2}\;sr^{-1}\;{\AA}^{-1}$ in the blue and red spectral regions, respectively, or $7.9{\pm}4.0$ and $7.7{\pm}5.8\;nW\;m^{-2}\;sr^{-1}$. Based on a comparison with the integrated brightness of galaxies, we conclude that the bulk of the COB is comprised of normal galaxies which have already been resolved by the current deepest observations. There seems to be little room for contributions from other populations including "first stars" at these wavelengths. On the other hand, the first component of the IPP residual light represents the diffuse Galactic light (DGL)-scattered starlight by the interstellar dust. We derive the mean DGL-to-$100{\mu}m$ brightness ratios of $2.1{\times}10^{-3}$ and $4.6{\times}10^{-3}$ at the two bands, which are roughly consistent with previous observations toward denser dust regions. Extended red emission in the diffuse interstellar medium is also confirmed.

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.