• Title/Summary/Keyword: corticospinal tract

Search Result 46, Processing Time 0.012 seconds

Comparison of Fractional Anisotropy Values of Corticospinal Tract and Corpus Callosum between 6- and 25-Direction Diffusion Tensor Images in Normal Subjects

  • Lee, Jeong-Hyun;Lee, Sun-Young;Kim, Hyun-Jeong;Park, Choong-Gon;Lee, Deok-Hee;Lee, Ho-Kyu;Kim, Sang-Joon;Suh, Dae-Chul
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.20-20
    • /
    • 2003
  • Purpose: To investigate the difference of fractional anisotropy (FA) values between 6- and 25-direction diffusion tensor images (DTI) in normal adult brain. Materials and Methods: DTI was peformed in 28 normal subjects (15 subjects with 6-direction, 13 subjects with 25-direction) in a 1.5 T MR system. DTI was done with SE-EPI sequence with TR/TE/NEX 10000/84/1, 5mm slice thickness and b=1000 s/mm2. FA values were measured from 8 different anatomical locations which included both cerebral peduncles, both posterior limbs of the internal capsules, both corona radiata, genu and splenium of the corpus callosum. Statistical difference of FA was tested between 6-and 25-direction DTI.

  • PDF

Effects of Sagunjatang-Ga-Nokyong on Neurologic Recovery in Rats after Spinal Cord Injury

  • Kim, Hyun-Seok;Yoon, Il-Ji
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.1-13
    • /
    • 2008
  • Objective : This study is investigate the effects of Sagunjatang-Ga-Nokyong(SGJ-NY) treatment on regenerative responses of corticospinal tract(CST) axons in the injured spinal cord. Methods :Using rats, we damaged their spinal cord, and then applied SGJ-NY extract to the lesion. Then we observed GAP-43 and NGF protein, astrcyte, axonal regeneration responses and axonal elongation. Result :Determination of GAP-43 and NGF protein levels were increased. And increased proliferation of astrocyte and enhanced processes in astrocytes were observed by SGJ-NY treatment. Higher number of astrocytes within the injury cavity in SGJ-NY treated group were showed, yet CSPG proteins were a weaker staining in the cavity in SGJ-NY. CST axons extended into the cavity and to the caudal area in SGJ-NY treated group were increased. Conclusion : SGJ-NY treatment might increase neural activity in the injured spinal cord tissue, and improved axonal regeneration responses. In this process, activation of astrocytes may play a role in promoting enhanced axonal elongation. the current study show that SGJ-NY exerts positive activity on inducing nerve regeneration responses by elevating neural tissue migration activities.

  • PDF

Improved Regenerative Responses of Injured Spinal Cord Nerve Fibers by the Treatment of Sukjihwang(Rehmanniae radix preparat)

  • Han, Kyu-Sul;Seol, In-Chan;Ryu, Ho-Ryong;Jo, Hyun-Kyung;An, Jung-Jo;NamGung, Uk;Kim, Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1569-1575
    • /
    • 2007
  • In oriental medicine, Sukjihwang (SJH, Rehmanniae radix preparat) has been used as one of the key ingredients for the prescription of several herbal decoctions and applied clinically for the treatment of several diseases including nervous system and cardiovascular disease. Here, possible growth-promoting effects of SJH on injured spinal cord axons were investigated in the rats. SJH administration increased levels of active form of ERK1/2 protein and Cdc2 proteins in the injured spinal cord tissue. Anterograde DiI-tracing of corticospinal tract axons showed that SJH-treatment enhanced axonal arborization in the injury area and extensive axonal extension into the caudal area. In SJH-treated group, glial scar formed after spinal cord injury was confined in a smaller area compared to the control group, and the trabecula structure was well observed within the injury cavity. Furthermore, increased proliferation and migration of astrocytes in the injury cavity were observed by SJH treatment. Thus, these present data provide a biological evidence on potential importance of SJH therapy for the treatment of injured spinal cord.

Mirror Movement Associated with Ophthalmoplegia and Sensorineural Hearing Loss (안구운동장애와 편측성 감각신경성 난청을 동반한 경상운동장애 1례)

  • Seo, Woo-Keun;Oh, Kyung-Mi;Koh, Sung-Beom;Kim, Byung-Jo;Jung, Hwan-Hoon;Park, Min-Kyu;Park, Kun-Woo;Lee, Dae-Hie
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.2
    • /
    • pp.160-163
    • /
    • 2001
  • Mirror movements in adult is usually accompanied with various clinical syndromes. But the pathogenesis of mirror movement is not clearly understood. A 20-year-old man visited with complaining of mirror movements in both hands, ophthalmoplegia and sensorineural hearing loss. He underwent through electromyography, transcranial magnetic stimulation, and functional magnetic resonance image. And we concluded that the mechanisms of his mirror movements were both ipsilateral innervated corticospinal tract and simultaneous activation of both motor cortex.

  • PDF

Motor Recovery in Stroke Patients (뇌졸중의 운동신경기능 회복)

  • Jang, Sung-Ho;Kwon, Yong-Hyun
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.2
    • /
    • pp.119-130
    • /
    • 2005
  • Stroke is a leading cause of chronic physical disability. The recent randomized controlled trials have that motor function of chronic stroke survivors could be improved through physical or pharmacologic intervention in the stroke rehabilitation setting. In addition, several functional neuroimaging techniques have recently developed, it is available to study the functional topography of sensorimotor area of the brain. However, the mechanisms involved in motor recovery after stroke, are still poorly understood. Four motor recovery mechanisms have been suggested, such as reorganization into areas adjacent to the injured primary motor cortex (M1), unmasking of the motor pathway from the unaffected motor cortex to the affected hand, attribution of secondary motor areas, and recovery of the damaged contralateral corticospinal tract. Understanding the motor recovery mechanisms would provide neurorehabilitation specialists with more information to allow for precise prognosis and therapeutic strategies based on the scientific evidence; this may help promote recovery of motor function. This review introduces several methodologies for neuroimaging techniques and discusses theoretical issues that impact interpretation of functional imaging studies of motor recovery after stroke. Perspectives, for future research are presented.

  • PDF

Localization of Bilateral Hemisphere Lesion Using Combined Transcranial Magnetic Stimulation and Diffusion Tensor Imaging: Report of Two Cases (경두개 자기자극과 확산텐서 신경섬유로 검사를 통한 대뇌 병변의 국소화: 증례보고)

  • Lee, Hyung Nam;Oh, Young-Bin;Kim, Gi-Wook;Won, Yu Hui;Ko, Myoung-Hwan;Seo, Jeong-Hwan;Park, Sung-Hee
    • Journal of Electrodiagnosis and Neuromuscular Diseases
    • /
    • v.20 no.2
    • /
    • pp.106-111
    • /
    • 2018
  • Transcranial magnetic stimulation (TMS) has been a gold standard for investigating central motor pathways in humans. Diffusion tensor imaging with fiber tractography (DTI FT) is known for its usefulness in detecting white matter lesion in vivo. We investigated the clinical usefulness of elucidating the integrity and continuity of corticospinal tract (CST) by combined use of TMS and DTI FT in this study. We report two cases who have presented with left hemiparesis and evaluated by both TMS and DTI FT; 10-year-old boy with Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episode syndrome and 20-year-old woman with traumatic brain injury. Combined use of TMS and DTI FT successfully led to localize the brain lesion that might cause motor impairment in patients with abnormal signal intensities in MRI. The results of this study suggest that TMS and DTI FT might provide the detailed information between function and anatomy of the CST, complementarily.

Software Development for the Visualization of the Orientation of Brain Fiber Tracts in Diffusion Tensor Imaging Using a 24 bit Color Coding

  • Jung-Su Oh;In Chan Song;Ik-Hwan Cho;Jong-Hyo Kim;Kee Hyun Chang;Kwang-Suk Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • Interests in human brain functionality and its connectivity have much frown up. DTI (Diffusion tensor imaging) has been known as a non-invasive MR) technique capable of providing information on water diffusion in tissues and the organization of white matter tract. Thus. It can provide us the information on the direction of brain fiber tract and the connectivity among many important cortical regions which can not be examined by other anatomical or functional MRI techniques. In this study. was used the 24 bit color coding scheme on the IDL platform in the windows environment to visualize the orientation of major fiber tracts of brain such as main association, projection, commissural fibers and corticospinal tracts. We additionally implemented a color coding scheme for each directional component and FA (fractional anisotropy), and used various color tables for them to be visualized more definitely. Consequently we implemented a fancy and basic technique to visualize the directional information of fiber tracts efficiently and we confirmed the feasibility of the 24 bit color coding scheme in DTI by visualizing main fiber tracts.

Proton Magnetic Resonance Spectroscopic Changes of the Primary Motor Cortex and Supplementary Motor Area in Hemiparetic Patients with Corticospinal Tract Injury due to Deep Intracerebral Hematoma

  • Yang, Dong-Joon;Son, Byung-Chul;Baik, Hyun-Man;Lee, Sang-Won;Sung, Jae-Hoon;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.32-34
    • /
    • 2005
  • Purpose: To investigate the metabolic changes in the motor and motor association cortices following axonal injury in the internal capsule that was caused by deep intracerebral hematoma. Materials and Methods: Using proton magnetic resonance spectroscopy (1H MRS), the authors studied the primary motor cortices (M-1) and supplementary motor areas (SMA) of 9 hemiparetic patients with documentable hemiparesis of varying severity, and we studied 10 normal volunteers as controls. To measure the M-1 and SMA biochemical changes, 4 separate single volumes of interest (VOIs) were located bilaterally in the affected and unaffected hemisphere (AH and UH). Results: 1H MRS provided a neuronal and axonal viability index by measuring levels of N-acetylaspartate (NAA) and creatine/phosphocreatine (Cr). The M-1/SMA NAA/Cr ratios of the AH and UH in patients, and the AH and normal volunteers were compared. The NAA/Cr ratios of the M-1 and SMA in AH, and the SMA in UH were significantly lower than those of normal volunteers. Conclusion: These 1H MRS findings indicate that axonal injury in the descending motor pathway at the level of internal capsule could induce metabolic changes in the higher centers of the motor pathway.

  • PDF

A Study on the Fiber Tracking Using a Vector Correlation Function in DT-MRI (확산텐서 트랙토그래피에서 Vector Correlation Function를 적용한 신경다발추적에 관한 연구)

  • Jo, Sung Won;Han, Bong Su;Park, In Sung;Kim, Sung Hee;Kim, Dong Youn
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.214-220
    • /
    • 2007
  • Diffusion tensor tractorgraphy which is based on line propagation method with brute force approach is implemented and the vector correlation function is proposed in addition to the conventional fractional anisotrophy value as a criterion to select seed points. For the whole tractography, the proposed method used 41 % less seed points than the conventional brute force approach for $FA{\geq}0.3$ and most of the fiber tracks in the outer region of white matter were removed. For the corticospinal tract passing through region of interest, the proposed method has produced similar results with 50% less seed points than conventional one.

  • PDF

Altered Peripheral Nerve Excitability Properties in Acute and Subacute Supratentorial Ischemic Stroke (급성 및 아급성 천막상 허혈성 뇌졸중에서 발생하는 말초신경 흥분성 변화)

  • Seo, Jung Hwa;Ji, Ki Whan;Chung, Eun Joo;Kim, Sang Gin;Kim, Oeung Kyu;Paeing, Sung Hwa;Bae, Jong Seok
    • Annals of Clinical Neurophysiology
    • /
    • v.14 no.2
    • /
    • pp.64-71
    • /
    • 2012
  • Background: It is generally accepted that upper motor neuron (UMN) lesion can alter lower motor neuron (LMN) function by the plasticity of neural circuit. However there have been only few researches regarding the axonal excitability of LMN after UMN injury especially during the acute stage. The aim of this study was to investigate the nerve excitability properties of the LMNs following an acute to subacute supratentorial corticospinal tract lesion. Methods: An automated nerve excitability test (NET) using the threshold tracking technique was utilized to measure multiple excitability indices in median motor axons of 15 stroke patients and 20 controls. Testing of both paretic and non-paretic side was repeated twice, during the acute stage and subacute stage. The protocols calculated the strength-duration time constant from the duration-charge curve, parameters of threshold electrotonus (TE), the current-threshold relationship from sequential sub-threshold current, and the recovery cycle from sequential supra-threshold stimulation. Results: On the paretic side, compared with the control group, significant decline of superexcitablity and increase in the relative refractory period were observed during the subacute stage of stroke. Additionally, despite the absence of statistical significance, a mildly collapsing in ('fanning in') of the TE was found. Conclusions: Our results suggest that supratentorial brain lesions can affect peripheral axonal excitability even during the early stage. The NET pattern probably suggests background membrane depolarization of LMNs. These features could be associated with trans-synaptic regulation of UMNs to LMNs as one of the "neural plasticity" mechanisms in acute brain injury.