• Title/Summary/Keyword: corrugated steel structures

Search Result 77, Processing Time 0.024 seconds

The Evaluation of Structural Stability of Corrugated Steel Plate Method applied in High-Speed Railway Vertical Tunnel Structures (고속철도 수직구 터널구조물에 적용된 파형강판공법의 구조적 안정성 검토)

  • Chung, Jee-Seung;Shin, Hwa-Cheol;Kim, Jin-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.64-69
    • /
    • 2016
  • In this paper, structural analysis of High-Speed railway vertical tunnel structures was performed to verify the structural stability. The corrugated steel plate method was applied to the vertical tunnel structures for its simple construction method and low cost. The structural stability of Wall, Connection and Storage section was performed with LRFD and ASD design method at joint part, buckling, stress and plastic hinge. From the results, all of vertical tunnel structures shown the structural stability regardless of design method and structure types. So, the application of corrugated steel plate in vertical tunnel structures instead of cast-in-placed concrete was quite enough.

Safety Assessment to Construction Position of Constructed Steel Structures under Declinating Earth Pressure (편토압을 받는 파형강판 구조물의 시공위치별 안전성 평가)

  • Lee, Sang-Hyun;Lim, Heui-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • The corrugated steel plate structures is applied to the construction of mountain tunnel portal part with shallow depth, the tunnel on the outskirts of urban areas and ecology move passage. In this study, A finite element method is used for research the behavior of corrugated steel plate structures due to construction position under declinating earth pressure and excavation depth. A finite element method were performed varying construction position(10, 15, 20 and 25m) from slope and excavation depth from surface. The hoop thrust and moment, displacement of corrugated steel plate subjected to construction position and excavation depth is determined from a finite element method. From results of finite element method, it was found that the increase of thrust and the decrease of displacement as the amount of distance increase from slope with construction position. But the thrust and moment, displacement has not different value with excavation depth.

Natural frequency of a composite girder with corrugated steel web

  • Moon, Jiho;Ko, Hee-Jung;Sung, Ik Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.255-271
    • /
    • 2015
  • This paper presents the natural frequency of a composite girder with corrugated steel web (CGCSW). A corrugated steel web has negligible in-plane axial stiffness, due to the unique characteristic of corrugated steel webs, which is called the accordion effect. Thus, the corrugated steel web only resists shear force. Further, the shear buckling resistance and out-of-plane stiffness of the web can be enhanced by using a corrugated steel web, since the inclined panels serve as transverse stiffeners. To take these advantages, the corrugated steel web has been used as an alternative to the conventional pre-stressed concrete girder. However, studies about the dynamic characteristics, such as the natural frequency of a CGCSW, have not been sufficiently reported, and it is expected that the natural frequency of a CGCSW is different from that of a composite girder with flat web due to the unique characteristic of the corrugated steel web. In this study, the natural frequency of a CGCSW was investigated through a series of experimental studies and finite element analysis. An experimental study was conducted to evaluate the natural frequency of CGCSW, and the results were compared with those from finite element analysis for verification purpose. A parametric study was then performed to investigate the effect of the geometric characteristics of the corrugated steel web on the natural frequency of the CGCSW. Finally, a simplified beam model to predict the natural frequency of a CGCSW was suggested.

Connections of the Corrugated Steel Plate Culvert with the Concrete Box (신설 파형강판 지중암거의 기존 콘크리트 박스 접합부 해석)

  • 조성민;변순주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.373-378
    • /
    • 2000
  • Zinc galvanized steel plates(sections) of annular corrugations have been used in buried steel culverts. These structures are referred to by a variety of names such as flexible pipes, buried pipes, soil-steel bridges, corrugated steel culverts, and etc. Buried corrugated steel structures show flexible behaviour under the soil load. compared with concrete box structures. Finite element analysis was performed to suggest the reasonable connecting method between the flexible steel culverts and the rigid concrete box. It was predicted that perfectly constrained connections could induce the excessive stress in steel plates. Therefore elastic bearing connections that allow vertical displacement at the connecting point were applied.

  • PDF

A Study on Characteristic of Underground Corrugated Steel Structure (파형강 지중구조물의 제특성 연구)

  • Park, Yeon Soo;Seo, Byoung Chal;Kim, Byong Ha;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.693-702
    • /
    • 2001
  • Ductility pipes, like corrugated steel structures, are expected to reduce its deformation when they are arranged in a row. Verifying this assumption can help make economic designs possible. Though checking the deformation of ductility pipe structures, like corrugated steel structure, decreasing deformation was found when the pipes are arranged in a row. In this way, arranging a corrugated steel structures in a row shows decreased deformation compared to corrugated steel pipes arranged in a single structure because the bedding effect restrains deformation. The deformation rates of reduction are proportionate to the diameter of the corrugated steel structure.

  • PDF

Experimental investigation and numerical analysis of optimally designed composite beams with corrugated steel webs

  • Erdal, Ferhat;Tunca, Osman;Ozcelik, Ramazan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Composite beams with corrugated steel webs represent a new innovative system which has emerged in the past decade for medium span in the construction technology. The use of composite beams with corrugated steel webs results in a range of benefits, including flexible spaces and reduced foundation costs in the construction technology. The thin corrugated web affords a significant weight reduction of these beams, compared with hot-rolled or welded ones. In the current research, an optimal designed I-girder beam with corrugated web has been proposed to improve the structural performance of continuous composite girder under bending moment. The experimental program has been conducted for six simply supported composite beams with different loading conditions. The tested specimens are designed by using one of the stochastic techniques called hunting search algorithm. In the optimization process, besides the thickness of concrete slab and studs, corrugated web properties are considered as design variables. The design constraints are respectively implemented from Eurocode 3, BS-8110 and DIN 18-800 Teil-1. The last part of the study focuses on performing a numerical study on composite beams by utilizing finite element analysis and the bending behavior of steel girders with corrugated webs experimentally and numerically verified the results. A nonlinear analysis was carried out using the finite element software ANSYS on the composite beams which were modelled using the elements ten-node high order quadrilateral type.

Shear strength of steel beams with trapezoidal corrugated webs using regression analysis

  • Barakat, Samer;Mansouri, Ahmad Al;Altoubat, Salah
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.757-773
    • /
    • 2015
  • This work attempts to implement multiple regression analysis (MRA) for modeling and predicting the shear buckling strength of a steel beam with corrugated web. It was recognized from theoretical and experimental results that the shear buckling strength of a steel beam with corrugated web is complicated and affected by several parameters. A model that predicts the shear strength of a steel beam with corrugated web with reasonable accuracy was sought. To that end, a total of 93 experimental data points were collected from different sources. Then mathematical models for the key response parameter (shear buckling strength of a steel beam with corrugated web) were established via MRA in terms of different input geometric, loading and materials parameters. Results indicate that, with a minimal processing of data, MRA could accurately predict the shear buckling strength of a steel beam with corrugated web within a 95% confidence interval, having an $R^2$ value of 0.93 and passing the F- and t-tests.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Behavior of optimized prestressed concrete composite box-girders with corrugated steel webs

  • Lu, Yanqiu;Ji, Lun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The traditional prestressed concrete composite box-girders with corrugated steel webs have several drawbacks such as large deflection and potential local buckling. In this study, two methods were investigated to optimize and improve the prestressed concrete composite box-girders with corrugated steel webs. The first method was to replace the concrete bottom slab with a steel plate and the second method was to support the concrete bottom slab on the steel flanges. The behavior of the prestressed concrete composite box-girders with corrugated steel webs with either method was studied by experiments on three specimens. The test results showed that behavior of the optimized and upgraded prestressed concrete composite box-girders with corrugated steel webs, including ultimate bearing capacity, flexural stiffness, and crack resistance, is greatly improved. In addition, the influence of different shear connectors, including perfobond leisten (PBL) and stud shear connectors, on the behavior of prestressed concrete composite box-girders with corrugated steel webs was studied. The results showed that PBL shear connectors can greatly improve the ultimate bearing capacity, flexural stiffness and crack resistance property of the prestressed concrete composite box-girders with corrugated steel webs. However, for the efficiency of prestressing introduced into the girder, the PBL shear connectors do not perform as well as the stud shear connectors.

Numerical study on the performance of corrugated steel shear walls

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Emadi, A.;Bayat, M.
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.405-420
    • /
    • 2014
  • This paper examines the nonlinear behaviour of corrugated steel plate shear walls under lateral pushover load. One of the innovations in these types of walls which have used in recent years is the use of the corrugated steel shear walls rather un-stiffness plates. In the last decades many experimental studies have been done on the on the corrugated steel shear walls. A finite element analysis that includes both material and geometric nonlinearities is employed for the investigation. A comparison is made between the behaviour of steel shear walls with sinusoidal corrugated plate and trapezoidal corrugated plate. The effects of parameters such as the thickness of the corrugated plate, the corrugation depth in the corrugated plates and the corrugation length of the infill of the corrugated plates, are investigated. The results of this study have demonstrated that in the wall with constant dimensions, the trapezoidal plates have higher energy dissipation, ductility and ultimate bearing than sinusoidal waves, while decreasing the steel material consumption.