• Title/Summary/Keyword: corrugated sheet

Search Result 33, Processing Time 0.017 seconds

The Synthesis and the Electrochemical Properties of Al Doped $V_2O_5$ (Al이 도핑된 오산화바나듐의 합성 및 전기화학적 특성)

  • Park, Heai-Ku;Joung, Ok-Young;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.491-495
    • /
    • 2005
  • Vanadium pentoxide xerogels with a doping ratio of $Al/V_2O_5$ ranging from 0.01 to 0.05 were synthesized by doping Al into $V_2O_5$ xerogel via the sol-gel process. By using the synthesized $Al_xV_2O_5$, the $Li/Al_xV_2O_5$ cells were assembled to investigate the chemical and electrochemical properties. Surface morphology of the $Al_xV_2O_5$ xerogel showed an anisotropic corrugated sheet-like matrix, and the interlayer distance was about $11.5{\AA}$. The IR spectra of the $Al_xV_2O_5$ revealed that the doped Al was coordinated to the vanadyl group in $V_2O_5$. The $Al_xV_2O_5$ xerogels showed enhanced reversibility and energy density compared with the $V_2O_5$ xerogel. The specific capacity of the $Al_{0.05}V_2O_5$ xerogel was more than 200 mAh/g at 10 mA/g discharge rate, and cycle efficiency was about 90% after the 31st cycling test between 1.9 V and 3.9 V.

Development of Multi-functional Mulch Papers and Evaluation of Their Performance-Studies for Reducing the Basis Weight of Mulch Paper- (다기능성 멀칭지의 개발 및 적용성 평가(제l보)-멀칭지의 저평량화를 위한 연구-)

  • Lee, Hak-Lae;Ryu, Jung-Yong;Youn, Hye-Jung;Joo, Sung-Bum;Park. Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.38-45
    • /
    • 1998
  • Soil and water contamination caused by the abundant use of agricultural chemicals including herbicides and fertilizers draws public concerns since these chemicals may pollute the agricultural lands as well as the food products grown on these lands. As a method to reduce the use of agricultural chemicals mulching with thin plastic film has been commonly practised for many years. Although use of the plastic film for mulching is very effective in preventing the growth of weed, it is almost impossible to remove all of the plastic film from the agricultural land and the remaining film eventually contaminates the soils. Therefore, it is very imperative to develop a mulching material that decomposes completely to prevent soil pollution problems and to enhance the competitive edge of domestic agriculture. Mulch papers are believed to have many positive characteristics in preventing problems caused by the plastic mulch film since it decomposes completely after use. However, the basis weight of mulch papers needs to be reduced to improve its handling properties and to reduce the raw material costs of pulps. In this paper the possibilities of using domestic old corrugated containers in producing mulch papers were examined. Also use of unbleached softwood kraft pulps and dry strength additives were exploited along with two-layered sheet forming technology in decreasing the basis weight of the mulch paper. Results showed that reduction of 20g/$m^2$ of basis weight of mulch paper was possible by the appropriate raw material selection and application of strength resin. To use the mulch papers in paddy fields, however, further research to improve its durability should be pursued.

  • PDF

Development of Solar Warehouse for Drying and Storing the Agricultural Products (농산물(農産物) 건조(乾燥) 및 저장(貯藏)을 위(爲)한 태양열(太陽熱) 저장고(貯藏庫)의 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Chang, Kyu Seob;Kim, Soung Rai;Jeon, Byeong Seon
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.357-370
    • /
    • 1982
  • Recent concern regarding price and availability of fossil fuels has spurred the interest in alternative sources for farm crop drying. Among the available options such as biomass energy, wind power, nuclear energy and solar energy etc., the increasing attention is being directed to the utilization of heat from solar energy especially for farm crop drying. Even though solar energy is dispersed over a large land area and only a relatively small amount of energy can be simply collected, the advantages of solar energy is that the energy is free, non-polluting. The study reported here was designed to help supply the informations for the development of simple and relatively inexpensive solar warehouse for farm crop drying and storage. Specifically, the objectives of this study were to determine the performance of the solar collector fabricated, to compare solar supplemented heat drying with natural air drying and to develop a simulation model of temperature in stored grain, which can be used to study the effects due to changes in ambient air temperature. For those above objectives, solar collector was fabricated from available materials. Corrugated steel galvanized sheet, painted flat black, was used as absorbers and clear 0.2mm polyethylene sheet was the cover material. The warehouse for rough rice drying and storage was constructed with concrete block, and the solar collector was used as the roof of warehouse instead of original roofing system of it. The results obtained in this study were as follows: 1. The thermal efficiency of the solar collector was average 26 percent and the overall heat transfer coefficient of the collector was approximately $25kJ/hr.m^2\;^{\circ}K$. 2. Solar heated air was sufficient to dry one cubic meter of rough rice from 23.5 to 15.0 percent in 7 days and natural air was able to dry the same amount of rough rice from 20.0 to 5 percent in l2 days. 3. Drying with solar heat reduced the required drying time to dry the same amount of rough rice into a half compared to natural air drying, but overdrying problems of the bottom layer were so severe that these problems should be thoroughly analyzed. 4. Simulation model of temperature in stored grain was developed and the results of predicted temperature agreed well with test results. 5. Based on those simulated temperature, changes in the grain-temperature were a large at the points of the wallside and the damage of the grain would be severe at the contact area of wall.

  • PDF