• Title/Summary/Keyword: corrosion thickness

Search Result 601, Processing Time 0.03 seconds

Steel Probing in Concrete Using Steel Corrosion Surface Measurement Method Modeling (철근부식 표면측정법 모델링을 통한 콘크리트 내 철근 탐사)

  • Rhim, Hong-Chul;Ma, Hyang-Hwa;Lee, Suk-Yong;Lee, Kun-Woo;Oh, Jin-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2009
  • Using non-invasive surface measurement method, the corrosion state of steel embedded inside concrete can be measured by placing four electrodes on the surface of concrete. Modeling of such measurements can provide valuable information as how interfacial impedance between corroded steel and surrounding concrete results in measured impedance on the concrete surface. In this paper, the modeling of surface measurement technique is used for the determination of the sensitivity of the measurements with respect to steel bar size embedded inside concrete and cover thickness. Modeling results indicated that steel bar sizes varied from D10 to D35 could be identified. Concrete cover thickness changes from 0.02 m to 0.1 m was also distinguished using the modeling scheme. The results confirm this modeling technique is capable of determining steel bar sizes and cover thickness, as well as simulating corrosion responses.

Effect of the Coating Structure on the Corrosion Resistance of Al-Mg Coated Steel (Al-Mg 코팅층의 구조가 강판 내식성에 미치는 영향)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Kim, Sung-Hwan;Byeon, In-Seop;Jeong, Jae-In;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.454-460
    • /
    • 2016
  • Double-layered Al-Mg films have been deposited by using an e-beam deposition method on a cold-rolled steel sheet(CR), which the structure of the film was Al/Mg/CR. The micro-structure, alloy phase, and corrosion resistance of the Al-Mg coated CR were investigated before and after heat treatment at $400^{\circ}C$ for 2, 3, and 10 min in a nitrogen atmosphere. Total thickness of Al-Mg films was fixed at $3{\mu}m$ and the thickness ratio of Al and Mg layers(Al:Mg) has been changed from 5:1 to 1:5. The cross-sectional morphology of the films, which had the thickness ratio of 2:1(Al:Mg), 1:1, and 1:2, was changed after heat treatment from columnar to featureless structure. The x-ray diffraction data for as-deposited films showed only pure Al and Mg peaks. Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ phase appeared after the heat treatment. The Al-Mg coating with the thickness ratio of 1:1(Al:Mg) showed the best corrosion resistance of up to 500 hours by salt spray test.

Failure Analysis on Localized Corrosion of Heat Transport Pipe in District Heating System (지역난방 열수송관 국부 부식 파손 분석)

  • Kim, You Sub;Chae, Hobyung;Kim, Woo Cheol;Jeong, Joon Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.122-130
    • /
    • 2020
  • In this study, a corrosion failure analysis of a heat transport pipe was conducted, as the result of a pinhole leak. Interestingly, the corrosion damage occurred externally in the pipeline, resulting in severe thickness reduction near the seam line. Also, while a stable magnetite protective film formed on the inner surface, the manganese oxide formation occurred only on the outer surface. The interior and exterior of the pipe were composed of ferrite and pearlite. The large manganese sulfide and alumina inclusions were found near the seam line. In addition, the manganese sulfide inclusions resulted in grooving corrosion, which progressed in the seam line leading to the reduction in the thickness, followed by the exposure of the alumina in the matrix to the outer surface. To note, the corrosion was accelerated by pits generated from the boundaries separating the inclusions from the matrix, which resulted in pinhole leaks and water loss.

Corrosion Failure Analysis of a Biogas Pipe (바이오가스 배관의 부식 파손 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2023
  • The use of biogas is an industrially necessary means to achieve resource circulation. However, since biogas obtained from waste frequently causes corrosion in pipes, it is important to elucidate corrosion mechanisms of the pipes used for biogas transportation. Recently, corrosion failure occurred in a pipe which supplied for the biogas at the speed of 12.5 m/s. Pinholes and pits were found in a straight line along the seamline of the pipe. By using corrosion-damaged samples, residual thickness, microstructure, and composition of oxide film and inclusion were examined to analyze the cause of the failure. It was revealed that the thickness reduction of biogas pipe was ~0.11 mm per year. A thin sulfuric acid film was formed on the surface of the interior of a pipe due to moisture and hydrogen sulfide contained in a biogas. Near the seamline, microstructure was heterogeneous and manganese sulfide (MnS) was found. Pits were generated by micro-galvanic corrosion between the manganese sulfide and the matrix in the interior of the pipe along the seamline. In addition, microcracks formed along the grain boundaries beneath the pits revealed that hydrogen-induced cracking (HIC) also contributed to accelerating the pitting corrosion.

Pitting Corrosion Inhibition of Sprinkler Copper Tubes via Forming of Cu-BTA Film on the Inner Surface of Corrosion pits

  • Suh, Sang Hee;Suh, Youngjoon;Kim, Sohee;Yang, Jun-Mo;Kim, Gyungtae
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.39-48
    • /
    • 2019
  • The feasibility of using benzotriazole (BTAH) to inhibit pitting corrosion in the sprinkler copper tubes was investigated by filling the tubes with BTAH-water solution in 829 households at an eight-year-old apartment complex. The water leakage rate was reduced by approximately 90% following BTAH treatment during 161 days from the previous year. The leakage of one of the two sprinkler copper tubes was investigated with optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis to determine the formation of Cu-BTA film inside the corrosion pits. All the inner components of the corrosion pits were coated with Cu-BTA films suggesting that BTAH molecules penetrated the corrosion products. The Cu-BTA film was about 2 nm in thickness at the bottom of a corrosion pit. A layer of CuCl and $Cu_2O$ phases lies under the Cu-BTA film. This complex structure effectively prevented the propagation of corrosion pits in the sprinkler copper tubes and reduced the water leakage.

Characteristics of Hot-Dip Znmgal Coatings with Ultra-High Corrosion Resistance

  • Sungjoo Kim;Seulgi So;Jongwon Park;Taechul Kim;Sangtae Han;Suwon Park;Heung-yun Kim;Myungsoo Kim;Doojin Paik
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.289-295
    • /
    • 2024
  • Zn-Mg-Al alloy hot-dip galvanized steel sheet has high corrosion resistance. Compared to conventional Zn coating with the same coating thickness, the high corrosion resistance Zn-Mg-Al coating is more corrosion-resistant. Various coating compositions are commercially produced and applied in diverse fields. However, these steel sheets typically contain up to 3 wt% magnesium. In recent years, there has been a growing demand for higher corrosion resistance in harsh corrosive environments. Therefore, variations in Mg and Al contents were investigated while evaluating primary properties and performance. As a result, we developed new alloy-coated steel with ultra-high corrosion resistance. A Zn-5 wt%Mg-Al coated steel sheet was evaluated for its corrosion resistance and various properties. As the amount of Mg added increased, the corrosion loss tended to decrease. The corrosion resistance of the coated steel sheet in a particular composition, the Zn-5 wt%Mg-Al coating sheet, was about 1.5 to 2 times higher than that of the conventional Zn-3 wt%Mg-Al coating sheet. Ultimately, this ultra-high corrosion-resistance coated steel sheet will provide a robust solution to conserve Zn resources and contribute to a low-carbon society.

A Preliminary Study on the Reused Channel-Type Lining Board with Corrosion-Damage (부식 강재 복공판의 재사용성 평가에 관한 기초적 연구)

  • Kim, In-Tae;Kim, Dong-Woo;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.170-179
    • /
    • 2009
  • Channel-type lining board(CLB) is a welded steel structure used in the field of open cut subway excavation and building basement construction. Lining board is generally installed at the underground environment which is exposed to corrosion factors such as humidity, temperature and corrosive gases. This study evaluates reusability of the corroded lining board by experimental and analytical method. Static loading tests were performed to know serviceability of corroded CLB after checking thickness loss of the used CLB parts. Strain of the plates and middle point deflection was measured simultaneously. According to experimental test results and comparison with numerical analysis, the thickness loss of the plates by corrosion makes more vertical displacements and stresses in members under the DB vehicle load considering impact factor. As a result, this paper is proposed a way to evaluate used and corroded CLB by checking the plates thickness and it makes construction engineers easy to know optimal time to replace their old CLBs with new one.

Enhanced Corrosion Resistance of WC-Co with an Ion Beam Mixed Silicon Carbide Coating

  • Yeo, Sun-Mok;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.193-193
    • /
    • 2011
  • Strong adhesion of a silicon carbide (SiC) coating to a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In a 1 M NaOH solution, the corrosion current density of SiC-coated WC-Co after heat treatment at 500$^{\circ}C$ was about 50 times lower than that for the as-received WC-Co. In addition, the corrosion resistance systematically increases with increasing the SiC coating thickness. On the other hand, for a 0.5 M H2SO4 solution, the corrosion current density for SiC-coated WC-Co was about 3 times lower than that for the as-received WC-Co. We discuss the physical reasons for the changes in the corrosion current density with the different electrolytes.

  • PDF

Evaluation of Nonchromated Thin Organic Coatings for Corrosion Inhibition of Electrogalvanized Steel

  • Park, Jong Myung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 2007
  • The toxicity of chromium that is used to impart corrosion resistance to galvanized steel created environmental and health-related concerns and generated a great deal of interest in developing chrome-free treatment coatings. In the present work, organic-inorganic composite coatings were used to coat electrogalvanized steel (EG) sheets for corrosion protection without degrading its weldability property. The new coatings composed of specially modified polyurethane dispersion hybridized with silicate and unique inorganic-organic inhibitors were developed during this work. It was found that about $1{\mu}m$ thickness of coating layer is secure enough in corrosion resistance of flat and formed part even after alkaline degreasing. Overall chemical resistances including fingerprint resistance and paint adhesion property were satisfied with the test specification of Sony technical standard of SS-00260-2002. Therefore, it is concluded that the newly developed chrome-free product can replace the conventional chromated product.

Impact of geometric pattern corrosion on limit failure pressure of buried gas pipelines

  • Hassani, Nemat;Kolbadi, S. Mohammad S.;Shiravand, Mahmud Reza;Golafshani, Jafar H.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.795-802
    • /
    • 2016
  • Gas pipelines are types of structures that are highly susceptible to corrosion. Sometimes, the pipes are subjected to a thinning of the wall thickness at the inside or outside wall due to erosion/corrosion. Therefore, it is important to evaluate the strength of the pipes undergoing corrosion to maintain the integrity of the piping systems. The main purpose of this study is to understand failure aspects caused by degradation of metal due to corrosion through. The ASME standard offers a relationship for the yielding pressure of the corroded pipes which was compared with the finite element results. The results demonstrate to obtain accurate results, the ASME relationship is unreliable. Moreover, pitting corrosion must be considered critical more than of other types.