• Title/Summary/Keyword: corrosion prevention

Search Result 154, Processing Time 0.024 seconds

An Experimental Study on the Physical Properties of Concrete Spread with Liquefied Organic and Inorganic Complex Antibiotics (액상 유·무기 복합 항균제를 도포한 콘크리트의 물리적 특성에 관한 실험적 연구)

  • Kim, Mu-Han;Kim, Jae-Hwan;Jo, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. In this study, to prevent biochemical corrosion of the sewer concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed and antimicrobial performance of it was investigated. After that, to consider applicability of antibiotics to concrete, physical properties of concrete spread with antibiotics were investigated. As a results of the study, it was proved that the antimicrobial performance of antibiotics was available. Also compressive strength and bond strength of concrete didn't closely connected with antibiotics, and resistance to abrasion, water absorption and air permeability of concrete was improved remarkably by spraying with it.

Preparation and application of silica-based coatings for corrosion protection of marine structures (해양구조물용 silica 기반 내해수성 코팅제의 제조 및 응용)

  • Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In this study, the development of the room temperature curable silica-based coating compositions for anticorrosive and antifouling performance in marine environments was carried out. The marine (plant) structures with many exposed parts are operated in harsh marine environments such as strong ultraviolet rays, extreme temperature differences and salt water corrosion. Organic paints that are easily degraded under these environments and easily eroded by physical stimuli such as waves can not play a role properly. Dense ceramic coatings on marine structures provide careful protections even in saltwater environments due to their high hardness and rust resistance. Therefore, in the case of ceramic coatings, their use and application range in marine structures can be greatly improved due to their functional advantages. In the present study, silica-based coating compositions based on colloidal silica with silane coupling agents, curing salts, and ceramic fillers were developed, and their applications as protective coatings for corrosion protection and fouling prevention in seawater were also studied.

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

Trend Evaluation of Self-sustaining, High-efficiency Corrosion Control Technology for Large-scale Pipelines Delivering Natural Gas by Analyzing Patent Data (특허데이터 분석을 통한 천연가스 공급용 대규모 파이프라인을 위한 자립형 고효율 부식 방지 기술의 동향평가)

  • Lee, Jong-Won;Ji, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.730-736
    • /
    • 2019
  • The demand for natural gas, which is considered an environmentally friendly energy source, is increasing, and at the same time, the market share of large pipelines for natural gas supply is increasing continuously. On the other hand, the corrosion of such large pipelines reduces the efficiency of natural gas transportation. Therefore, this study aims to establish a strategy for securing the patent rights of related technologies through quantitative analysis of patents on energy-independent high-efficiency corrosion prevention technology for large-scale pipelines for natural gas supply. In this patent technology trend study, Korean, US, Japanese, and European patents filed, published, and registered by June 2018 were analyzed, and a technical classification system and classification criteria were prepared through expert discussion. To use fuel cells as an external power source to prevent the corrosion of natural gas large-scale pipelines, it is believed that rights can be claimed using an energy control system and methods having 1) branch structures of pipeline and facility designs (decompressor/compressor/heat exchanger) and 2) decompression/preheating and pressurization/cooling technology of high pressure natural gas.

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.

An Analysis on Storing Container Corrosion of Powder Extinguisher according to Durable Years of Each Type-3 Powder Extinguisher (제3종 분말소화기 대상별 내용연수에 따른 저장용기의 부식도 분석)

  • Son, Ju-Dal;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.661-666
    • /
    • 2022
  • This study presented the criteria for analyzing the corrosion of the powder extinguisher storage container according to the useful life, and conducted an experiment on the market area, the factory area, and the apartment building area to ensure proper performance at all times and drew the following conclusions.First, the experimental value for the degree of corrosion of external contact storage containers was found to be unsuitable in the factory area in 2014. In 2012, the experimental value for the degree of corrosion of external contact storage containers in apartment complexes was found to be inappropriate. Second, the experimental value for the dropout of the external paint in the storage container was found to be inappropriate in the factory area in 2014. In 2012, the experimental value of the degree of coating of the external paint storage container in the apartment building area was found to be inappropriate. It was analyzed that the useful life of the fire extinguisher is 10 years, and if it passes the sample test only once, it will be used for up to 13 years, but in fact, the difference varies greatly depending on the surrounding environment of the fire extinguisher place. Since the degree of corrosion of the storage container of the fire extinguisher from 8 years of the fire extinguisher's useful life is clearly decreased, it is judged that 5 years of the fire extinguisher is appropriate.

Strength Characteristics of Improved Dredged Clay for Urgent Recovery of Ground Subsidence (함몰지반 긴급복구를 위한 개량준설점토의 강도 특성)

  • Oh, Sewook;Baek, Seungju;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.31-38
    • /
    • 2019
  • Recently, there has been an increasing number of ground subsidence (sink-hole) in the downtown areas, and in such a case, it is important to minimize accidents and passages through prompt recovery. With respect to the present recovery method for ground subsidence, the methods of applying the back filling after excavating the ground subsidence or using the grouting injected materials to restore the ground are mostly used, but there has been few studies on materials used for recovering the ground subsidence. Therefore, in order to clarify the characteristics of back filling materials used in the ground subsidence, this study uses the environment-friendly hardening agent to improve the dredged clay, and then, the mixture ratio of hardening agent and mixture ratio of decomposed granite soil is changed to cure for 3, 7, 14 and 28 days to analyze the intensity characteristics of the unconfined compression, and it was compared with the unconfined compression intensity for the previously used cement, a hardening agent. In order to evaluate the characteristics of intensity on the back filling materials, the C.B.R test was carried out, and for the review on whether the back filling materials influence on corrosion of water and sewer pipes and others, the soil non-resistance test was carried out. As a result of the test, for the case of the recovery work of the ground subsidence that requires urgency, it is considered as prudent if the hardening agents of 12% are integrated to cure for 3 days or longer, and for not having the influence on the corrosion of the gas tube or water pipes, it is proposed to mix for 30% or more of the decomposed granite soil. Door model test were conducted To confirm the bearing capacity characteristics of the solidified layer.

Corrosion Characteristics by CCPP Control in Simulated Distribution System (CCPP 조절에 따른 모의 상수관로의 부식특성에 관한 연구)

  • Kim, Do-Hwan;Lee, Jae-In;Lee, Ji-Hyung;Han, Dong-Yueb;Kim, Dong-Youn;Hong, Soon-Heon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1249-1256
    • /
    • 2005
  • This study was performed to investigate the efficiency of the corrosion prevention in the simulated distribution system using CCPP(Calcium Carbonate Precipitation Potential) as the anti-corrosive index by adjusting pH, total dissolved solids, alkalinity and calcium hardness in the water treatment pilot process. The materials of the simulated distribution system(SDS) were equiped with same materials of real field water distribution system. CCPP concentrations controlled by $Ca(OH)_2$, $CO_2$ gas and $Na_2CO_3$ in the simulated distribution system and uncontrolled by the chemicals in the general water distribution system were average 0.61 mg/L and -7.77 mg/L. The concentrations of heavy metals like Fe, Zn, Cu ions in effluent water of the simulated distribution system controlled with water quality were decreased rather than the general water distribution system uncontrolled with water quality. In simulated distribution system(SDS), corrosion prevention film formed by CCPP control was observed that scale was come into forming six months later and it was formed into density as time goes on. We were analyzed XRD(X-ray diffraction) for investigating component of crystal compounds and structure for galvanized steel pipe(15 mm). Finding on analysis, scale was compounded to $Zn_4CO_3(OH)_6{\cdot}H_2O$ (Zinc Carbonate Hydroxide Hydrate) after ten months late, and it was compounded on $CaCO_3$(Calcium Carbonate) and $ZnCO_3$(Smithsonite) after nineteen months later.

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

A study on electrochemical protection diagrams of steel in nitric and sulfuric acid solutions (질산과 황산 용액중의 철강의 전기방식도에 관한 연구)

  • 전대희;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.43-63
    • /
    • 1989
  • Various kinds of corrosion prevention methods have been developed. It is known that the method of electrochemical protection is more effective and economical than any other method on the large scale metal structures in corrosive solutions. Strong acid solutions such as nitric and sulfuric acid solutions are often used in industries, and the expensive stainless steel is almost exclusively used for the equipment that comes in contact with such acid solutions. However, it is more reasonable that carbon steel is used rather than stainless steel depending upon concentration of those acid solutions from the economical viewpoint. In this study, the typical strong acid solution such as nitric and sulfuric acid solutions are chosen for the experiment and the selected materials of specimen are the stainless steels of SUS 304L and SUS 316L, the carbon steels of SS 41, SM 50 and RA 32, and highly pure lead. Electrochemical protection diagrams can be drawn with data from the external cathodic and anodic polarization curves of SUS 304L, SUS 316L and SM 50 steels in 5-60% nitric acid solutions and from those polarization curves of SS 41, RA 32, SM 50 and SUS 316L steels, and highly pure lead in 2.5-98% sulfuric acid solutions at the slow scanning rate. The data obtained with using the determination method of the optimum cathodic protection potential, the Tafel extrapolation method and the characteristics of anodic polarization curves. The main results obtained from the diagrams are as follows: 1) In nitric acid solution : (1) Corrosion potentials exist in each of those corrosion zones on the stainless steels in the lower concentration than about 12% solutions and on the high tensile strength steels in the lower concentration than about 30% solutions, but the corrosion current (density) in each zone is small on the above mentioned former steels and large on the latter ones. (2) The stainless steels can be self-passivated in the higher concentration than 15% solutions, and the high tensile strength steels gives rise to the same phenomenon in the higher concentration than 35% solutions. (3) The stainless steels in the lower concentration than 60% solutions and the high tensile strength steels in the higher concentration than 35% solutions can be used without protection, but the latter steels must ve protected anodically in the lower conccentration than about 30% solutions. 2) In sufuric acid solution : (1) The carbon steels can be self-passivated in the higher concentration than 45% solutions, and the SUS 316L steel in higher concentration than 75% solutions and the lead in all concentration solutions also gives rise to the same phenomenon. (2) The lead in the lower concentration than 80% solutions and the SUS 316L steel in the higher concentration than 80% solutions can be used without protection. (3) The carbon steels in the higher concentration than 50% solutions also can be used without protecting economically, but the SUS 316L steel in the 20-70% solutions are considerably corrosive without protecting anodically.

  • PDF