• Title/Summary/Keyword: corrosion initiation

Search Result 188, Processing Time 0.024 seconds

Effect of Wet Curing Duration on Long-Term Performance of Concrete in Tidal Zone of Marine Environment

  • Khanzadeh-Moradllo, Mehdi;Meshkini, Mohammad H.;Eslamdoost, Ehsan;Sadati, Seyedhamed;Shekarchi, Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.487-498
    • /
    • 2015
  • A proper initial curing is a very simple and inexpensive alternative to improve concrete cover quality and accordingly extend the service life of reinforced concrete structures exposed to aggressive species. A current study investigates the effect of wet curing duration on chloride penetration in plain and blended cement concretes which subjected to tidal exposure condition in south of Iran for 5 years. The results show that wet curing extension preserves concrete against high rate of chloride penetration at early ages and decreases the difference between initial and long-term diffusion coefficients due to improvement of concrete cover quality. But, as the length of exposure period to marine environment increased the effects of initial wet curing became less pronounced. Furthermore, a relationship is developed between wet curing time and diffusion coefficient at early ages and the effect of curing length on time-to-corrosion initiation of concrete is addressed.

A performance-based design method for chloride-induced cover cracking of RC structures

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.573-582
    • /
    • 2017
  • Chloride-induced cover cracking will aggravate the performance deterioration for RC structures under the chlorideladen environment, which may endanger the safety of structures and occupants. Traditional design method cannot ensure that a definite performance is satisfied. To overcome the defects, a study on the performance-based design method was carried out in this paper. Firstly, the limit state functions were established for the corrosion initiation and cover cracking. Thereafter, the uncertainty analysis was performed to study the effects of random factors on the time-dependent performances. Partial factor formulae were deduced through the first-order reliability method for performance verification. Finally, an illustrative example was presented and the sensitivity of cover depth to other parameters was carried out. It is found that the uncertainties of the random variables have great effects on the required cover depth. It is demonstrated that the performance-based design method can ensure that the target performance can be satisfied and support to formulate a rational maintenance and repair strategy for RC structures under the chloride environment.

Effect of Preemptive Weld Overlay on Residual Stress Mitigation for Dissimilar Metal Weld of Nuclear Power Plant Pressurizer (예방 용접 Overlay가 원전 가압기 이종금속용접부 잔류응력 완화에 미치는 영향)

  • Song, Tae-Kwang;Bae, Hong-Yeol;Chun, Yun-Bae;Oh, Chang-Young;Kim, Yun-Jae;Lee, Kyoung-Soo;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.873-881
    • /
    • 2008
  • Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a preemptive weld overlay(PWOL). In pressurized water reactor(PWR) dissimilar metal weld is susceptible region for primary water stress corrosion cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

Evaluation of Nondestructive Evaluation Size Measurement for Integrity Assessment of Axial Outside Diameter Stress Corrosion Cracking in Steam Generator Tubes (증기발생기 전열관 외면 축균열 건전성 평가를 위한 비파괴검사 크기 측정 평가)

  • Joo, Kyung-Mun;Hong, Jun-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy600 HTMA tubes has been increasing. As a result, SGs with Alloy600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and abilty of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Quantifying Chloride Ingress in Cracked Concrete Using Image Processing (이미지 분석을 이용한 균열 콘크리트 내 염화물 침투 정량화 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • Chloride, which is one of the main deterioration factors in reinforced concrete structures, can degrade the performance of the structure due to chloride-induced corrosion of steel. Chloride content at steel depth or the rate of chloride penetration is necessary to determine deterioration of reinforced concrete or to calculate initiation time of steel corrosion caused by chloride attack. Chlorides in concrete are generally identified with typical two methods including chloride profiling using potentiometric titration method and discoloration method using AgNO3 solution. The former is advantageous to estimate chloride penetration rate (diffusion coefficient in general) with measured chloride contents directly, but it is laborious. In the case of latter, while the result is obtained easily with the range of discoloration, the error may occur depending on workmanship when the depth of chloride ingress is measured. This study shows that chloride penetrated depth is evaluated with the results obtained from discoloration method through image analysis, thereby the error is minimized by workmanship. In addition, the effect of micro-crack in concrete is studied on chloride penetration. In conclusion, the depth of chloride penetration was quantified with image analysis and as it was confirmed that chlorides can rapidly penetrate through micro-cracks, caution is especially required for cracks in concrete structure.

A Study on the Stress Corrosion Cracking Propagation Behaviors of high Strength Steel by Means of Emission Test (음향방출시험에 의한 고장력강의 응력부식 균열전파 거동에 관한 연구)

  • Yu, Hyo-Seon;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.361-371
    • /
    • 1993
  • Among the various test methods for stress corrusiun cracking(SCC) susceptibility evaluatiun, the slow stram rate test(SSHT) method is a rapid and effective nwthod to evaluate the SCC susceptibility of metal in relatively short time. But it is very difficult to analyze the microfracture behaviors in SCC process by using the test(SSRT) method only. Up to now, it has been well known that the acoustic emission(AE) test is the effective technique to monitor the microcrack initiation and propagation in material fracture pmcess. Therefore. in this paper, we analyzed the correlation between the see process and the characteristics of AE signal by using the SSHT and the AE test. According to the test results. the AE signals produced from the material microfracture were clearly depended on the test environment. The AE signal characteristics generated during see process in synthetic sea water were comparatively greater than those. in air. In addition, the SCC behaviors could be definitely evaluated by the amplitude parameter of AE signals.

  • PDF

Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates (시멘트 수화물의 염소이온 흡착거동에 따른 메커니즘 및 해석기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The chloride ions, responsible for the initiation of the corrosion mechanism, intrude from the external medium into the concrete. A part of the intruding chloride ions will be retained by the hydration products of the binder in concrete, either through chemical adsorption or by physical adsorption. Since the hydration products of cement are responsible for the chloride binding in concrete, this study focused on the chloride binding in individual hydrate. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. In particular, AFm phase showed a chemical adsorption with slow rate in 40 days, while C-S-H phase showed binding behaviors with 3 stages including momentary physical adsorption, physico-chemical adsorption, and chemical adsorption. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. It is believed that the approach suggested in this study can provide us with a good solution to understand the mechanism on chloride adsorption with hydrates and to calculate a rate of chloride penetration with original source of chloride ions, for example, marine sand at initial time or sea water penetration later on.