• Title/Summary/Keyword: corrosion fatigue

Search Result 418, Processing Time 0.024 seconds

Investigation on the Corrosion Behaviour of Weld Structure

  • Kim, Hwan Tae;Kil, Sang Cheol;Hwang, Woon Suk;Cho, Won-Seung
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.33-35
    • /
    • 2007
  • Welding technology plays an important role in the fabrication of structure, and this has led to an increasing attention in the use of high quality advanced welding technology such as power beam welding, friction stir welding, and laser-arc hybrid welding, etc. At the same time, welding can influence various factors in the performance of plant and equipment, and corrosion behaviour of weldment has been one of the major issues for both welding and corrosion research engineers. The aim of this paper is to give a short survey of the recent technical trends of welding and corrosion behaviours including the electrochemical corrosion, stress corrosion cracking, and corrosion fatigue in connection with the welding materials, welding process, and welding fabrication.

Corrosion Failure Analysis of Condensate Pre-Heater in Heat Recovery Steam Generator (배열회수보일러 복수예열기 부식 파손 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Kim, Kyung Min;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • In this work, we have performed a corrosion failure analysis of a leaking tube connected to an upper header of a condensate pre-heater in a heat recovery steam generator. It was revealed that the leakage position in the tube was the location where the materials were easily vulnerable due to tensile residual stresses induced by the material manufacturing process and welding process. In addition to an imbalance in the module induced by temperature difference during operation of the pre-heater, the weight of the modules and thermal fatigue provoked a type of stress of tensile-tensile fatigue on the tube. Thus, the leakage position of the pre-heater was exposed to the tensile stress on the inner surface of the tube facing the gas, which rendered the unstable oxide layer susceptible to corrosion and the formation of pits on the water side. The cracks propagated along with the degraded microstructure in a transgranular cracking mode under fatigue loading and finally resulted in water leakage.

Properties of Fatigue Crack Initiation and Arrest in Structural Steel Under Acid Fog (산성안개 하의 구조용강에서 피로균열의 발생 및 정류특성)

  • Kim, Min-Geon;Kim, Jin-Hak;Kim, Myeong-Seop;Ji, Jeong-Geun;Gu, Eun-Hoe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.374-379
    • /
    • 2002
  • Corrosion fatigue tests were carried out to clarify the influence of acid fog as environmental factor on the fatigue strength of SM55C using rotary bending fatigue tester. The fatigue strength of acid fog specimen extremely decreased about 80% compared to that of distilled water specimen. In acid fog environment, a number of cracks commenced at corrosion pit and coalesced with the adjacent cracks during they propagate, and they formed a single non-propagating circumferential crack under the endurance stress of N=5$\times$10$\^$7/ cycles. Also, the depth of the crack is smaller than that of normal fatigue crack, so the crack has a veil small aspect ratio. The reason of this peculiar crack growth characteristics is that the crack opening-closure behaviors are hindered by corrosion products on the surface crack faces, and hence it is thinkable that the strong corrosion action like anodic dissolution for crack growth in depth direction is weaker compared with surface, resulting from faint pumping action of crack during loading-shedding processes.

Characteristics of Corrosion Fatigue of High Strength Steel for Marine Weld Structure

  • Choi, Seong-Dae;Kubo, Takeo;Misawa, Hiroshi;Lee, Jong-Hyung;Song, Dug-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.53-60
    • /
    • 2003
  • Large sized marine structures are used under corrosion environment of seawater and applied by severe service loading such as an ocean current, a billow and a tempest. Marine structures are usually constructed by lots of thick wall steel pipes joining welded joints. The thickness of such as steel pipes is usually more than 40mm. The such as steels are called "Thermo-Mechanical Control Process steel (TMCP steel)" strengthened by a heat treatment in process of steel manufactures. The failure, especially crack initiation, of marine structures was starting at weld joints under service condition. Then they should be designed by basis of the fatigue strength under seawater corrosion environment of weld joints. To clarity the fatigue crack initiation behavior is important more than to clarify the crack propagation behavior on the strength design of marine structures, because it is very difficult to find out the crack initiation and propagation phenomena and then even if it will be able to find out, it is considered that the refit of the damaged parts of welded joints have a technical difficulty under the sea. Therefore, it is most important to clarify the corrosion fatigue crack initiation behavior under the seawater condition. But, there is one big difficulty to make a test for thick plate specimen, for example thicker than 40mm. Because, it is need large capacity loading apparatus to test such as thick plate specimen. In this research, the new configuration specimen for fatigue crack initiation tests was proposed. Using this new specimen, it is easy to carry out the fatigue clack initiation tests with relatively low cyclic loading and to observe a fatigue crack initiation behavior.

  • PDF

Life Prediction and Fatigue Strength Evaluation for Surface Corrosion Materials (인공부식재의 피로강도평가와 통계학적 수명예측에 관한 연구)

  • 권재도;진영준;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1503-1512
    • /
    • 1992
  • The strength evaluation and life prediction on the corrosion part of structure is one of the most important subjects, as a viewpoint of reducing economic loss by regular inspection, maintenance, repair and replace. For this purpose, it has been difficult to obtain the available data on growth of pit depth or growth rate of each pit which depends on time. In this paper, the life prediction and strength evaluation method was suggested for the structure with irregular stress concentration part by surface corrosion. The statistical distribution pattern of corrosion depth and the degree of fatigue strength decline were confirmed according to corrosion period by artificial corrosion of SS41 steel. The life prediction and the fatigue strength evaluation of materials with consideration of the corrosion period on the extreme value statistic analysis by the data of maximum depth of corrosion and on random variable was studied.

Fatigue Strength Evaluation of Rusting Decayed Hull Steel Plate in Air and in Artificial Seawater Condition (선체의 부식쇠모강판의 대기중 및 해수중 피로강도평가에 관한 연구)

  • Kim, Won-Beom;Paik, Jeom-Kee;Iwata, Mitsumasa;Yajima, Hiroshi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.467-475
    • /
    • 2006
  • Fatigue strength of hull structural steel plate, extracted from longitudinal bulkhead of a 17-year-old ore/oil carrier for renewal, was investigated in air and in artificial seawater condition. The surface of the plate was covered with corrosion pits and they proved to be crack initiation sites by fractography using SEM. From this research, it was found that the evaluation method for fatigue strength of virgin mild steel plates in air and in artificial seawater can also be applied to the evaluation of the fatigue strength of mild steel plates those were long-term exposed to a corrosive environment and their surfaces had been rusted intensively.

Fatigue Crack Growth Behavior of Ni-Cr-Mo Steel under Acid Fog Environment (산성안개 환경하에서 Ni-Cr-Mo 강의 피로크랙전파거동)

  • Kim, Min-Geon;Im, Yong-Ho;Kim, Man-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1841-1846
    • /
    • 2000
  • To examine the effect of acid fog on the corrosion fatigue behavior in structural steel, fatigue tests under acid fog atmosphere were carried out in comparison with distilled water. The corrosive c omponents contained in acid fog pile up the corrosion products on crack face and show a crack branching and crack tip blunting. Therefore, due to these workings crack growth rate was reduced by decreasing the effective stress range in crack tip rather than under distilled water. Also the effect of sulfuric acid, which is the main component of acid fog, and testing speed on fatigue crack growth were examined. It was found that corrosion behavior was remarkably dependent upon pH and Hz rather than components of acid fog. According as pH and testing speed decrease below a specific value, crack growth was accelerated in comparison with distilled water. This reveals that due to liquid having strong acidity and slow speed of test the crack face dissolution was promoted, so crack closure was disturbed in the process of stress descent.

Fatigue of SS490A and SS400 Corroded Specimens (SM490A와 SS400 대기부식 시편의 피로 특성 평가)

  • Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.725-731
    • /
    • 2009
  • For structural design and diagnosis, quantitative relationship between corrosive degradation and variation of mechanical properties such as tensile strength and fatigue strength is needed. But it is difficult to find experimental data associated with corrosive degradation of structural structures in the literature. In this study, first of all I established the atmospheric corrosion test procedure. And using specimens of SM490A and SS400 on the atmospheric corrosion test bed, I carried out tensile and fatigue tests at regular intervals. And we studied the effect of post-weld heat treatment on the tensile and fatigue behaviour. It is found fatigue strength decreases as the atmospheric corrosion period increases.

A study on the characteristics of corrosion-fatigue-crack propagation in the welded parts of high tensile steels under sea water (고장력강 용접부의 해수중 부식피로균열 성장특성에 관한 연구)

  • 김영식;박무창
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.113-122
    • /
    • 1987
  • Ships and offshore strrctures are exposed to the corrosive surroundings, and the extablishment of the design criteria and the elucidation on the influence by this environment are requested to maintain the safety and to demonstrate the function of the structure. In this paper, the fatigue-crack-growth behavior on the compact tension specimens of quenched, tempered HT80 grade steels and RA36 high tensile steels having a single edge fatigue cracked notch respectively, were investigated under the repeated tensile stress with constant stroke in sea water for the welded parts by shielded metal arc welding. Main results obtained are summerized as follows; 1. The fatigue-crack-growth rates da/dN in sea water appeared to be greater behavior than those in air environment at the same stress intensisy factor range $\DeltaK$. 2. The correlation data of da/dN$\DeltaK$ of the two kinds of high tensile steels in sea water showed no great difference, however, the correlation data of da/dN$\DeltaK/\sigma_y$($\sigma_y$ stands for yield strength of the material) showed that the fatigue-crack-growth behavior of RA36 plate is affected by active path corrosion(APC) mechanism, while that of HT80 grade plate is mainly affected by hydrogen embrittlement mechanism.

  • PDF

Effect of Oxide Film Formation on the Fatigue Behavior of Aluminum Alloy (알루미늄합금 재료의 산화막 형성이 피로거동에 미치는 영향)

  • Kim, Jong-Cheon;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.421-428
    • /
    • 2012
  • In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four-pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface roughness. In addition, fractographic analysis was performed and the oxide films formed on the material surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion.