• Title/Summary/Keyword: correction models

Search Result 531, Processing Time 0.023 seconds

Probabilistic shear strength models for reinforced concrete beams without shear reinforcement

  • Song, Jun-Ho;Kang, Won-Hee;Kim, Kang-Su;Jung, Sung-Moon
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.15-38
    • /
    • 2010
  • In order to predict the shear strengths of reinforced concrete beams, many deterministic models have been developed based on rules of mechanics and on experimental test results. While the constant and variable angle truss models are known to provide reliable bases and to give reasonable predictions for the shear strengths of members with shear reinforcement, in the case of members without shear reinforcement, even advanced models with complicated procedures may show lack of accuracy or lead to fairly different predictions from other similar models. For this reason, many research efforts have been made for more accurate predictions, which resulted in important recent publications. This paper develops probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on deterministic shear strength models, understanding of shear transfer mechanisms and influential parameters, and experimental test results reported in the literature. Using a Bayesian parameter estimation method, the biases of base deterministic models are identified as algebraic functions of input parameters and the errors of the developed models remaining after the bias-correction are quantified in a stochastic manner. The proposed probabilistic models predict the shear strengths with improved accuracy and help incorporate the model uncertainties into vulnerability estimations and risk-quantified designs.

Nasal airflows in deformed nasal cavity models

  • KIM Sung Kyun;SHIN Sok Jae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.135-140
    • /
    • 2004
  • Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. With our experiences of experimental investigations on nasal airflows in normal and abnormal nasal cavity models, we are going to deal with the topic that may contribute to the diagnosis and treatment of nasal diseases. In this paper, airflows in the normal and artificially deformed models, which simulate surgical treatment, are investigated experimentally by PIV. High-resolution CT data and careful surface rendering of computational model with the help of the ENT doctor provide more sophisticated nasal cavity models. The CBC PIV (Correlation Based Correction PIV) algorithm with window offset is used for PIV flow analysis. Average and RMS distributions in sagittal and coronal sections are obtained for inspiratory and expiratory nasal airflows. Comparisons in nasal airflows for both normal and deformed cases are also appreciated. In case of simulations of surgical operations, velocity and RMS distributions in coronal section changes locally, this may cause some difficulties in physiologic functions of noses and may hurt mucosal surface.

  • PDF

Vibration analysis of FGM beam: Effect of the micromechanical models

  • Hadji, Lazreg
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.265-280
    • /
    • 2020
  • In this paper, a new refined hyperbolic shear deformation beam theory for the free vibration analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equations of motion are derived from the Hamilton's principle. Navier type solution method was used to obtain frequencies, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the free vibration response of a simply supported FG beams.

Assessment of Reynolds Stress Turbulence Closures for Separated Flow over Backward-Facing Step (후향계단을 지나는 박리류에 대한 레이놀즈응력 모델의 성능 평가)

  • ;;Oh, Myung-Taek
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3014-3021
    • /
    • 1995
  • This study is carried out in order to evaluate the performances of the Reynolds stress turbulence models such as SSG and GL models in the calculation of separated flow over backward-facing stepp.In addition, two slow return-to-isotropy models, YA and Rotta models combined with rapid part of SSG model are also tested. The finite volume method is used to discretize the governing differential equations, and the power-law scheme is used to approximate the convection terms. The SIMPLE algorithm is used for pressure correction in the governing equations. The results show that SSG model gives the better prediction near the reattachment point than GL model. In cases that the rapid term of SSG model is combined with Rotta and YA slow models, the results show the better predictions of stress components in recirculation zone, but indicate inaccuracy in the predictions of mean velocity.

Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, a new refined hyperbolic shear deformation beam theory for the bending analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the bending response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equilibrium equations are derived from the principle of virtual work. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG beams.

A Comparisons of TCM schemes for OFDM in fading channel (페이딩 채널에서 OFDM에 적용 가능한 TCM방식 비교분석)

  • 조기원;박범대
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.79-82
    • /
    • 1999
  • In this paper, it was studied that the performance of OFDM transmission scheme was improved in fading channel by applying TCM, which has advantages of error correction and bandwidth efficiency. Simulation was carried out for two TCM models with different code efficient length. By mapping two models to square 16QAM, the model with the code efficient length of 2 achieved 3㏈ better than the other for the BER of 10$^{-3}$ . In conclusion, if we want to achieve a better performance with TCM in OFDM applications, we should select a TCM with langer code efficient length.

  • PDF

The Study for the Assessment of the Noise Map for the Railway Noise Prediction Considering the Input Variables (철도소음예측시 입력변수의 영향을 고려한 소음지도 작성 및 평가)

  • Lee, Jaewon;Gu, J.H.;Lee, W.S.;Seo, C.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.295-300
    • /
    • 2013
  • The noise map can be applied to predict the effect of noise and establish the noise reduction measure. But the predicted value in the noise map can vary depending on the input variables. Thus, we surveyed the several prediction models and analyzed the changes corresponding to the variables for obtaining the coherency and accuracy of prediction results. As a result, we know that the Schall03 and CRN model can be applied to predict the railway noise in Korea and the correction value, such as bridges correction, multiple reflection correction, curve correction must be used for reflecting the condition of the prediction site. Also, we know that the prediction guideline is an essential prerequisite in order to obtain the unified and accurate predicted value for railway noise.

A study of correction dependent on process parameters for printing on a three-dimensional surface (3차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구)

  • Song Min Sup;Kim Hyo Chan;Lee Sang Ho;Yang Dong Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.181-190
    • /
    • 2006
  • In the industry, three-dimensional coloring has been needed for a realistic prototype. The Z-corporation developed a 3D printer which provides a three-dimensional colored prototype. However, the process cannot be adopted to models fabricated by other rapid prototyping processes. In addition, time and cost for manufacturing colored prototypes still remain to be improved. In this study, a new coloring process using an ink-jet head is proposed for color printing on a three-dimensional surface. Process parameters such as the angle and the distance between the ink-jet nozzle and the three-dimensional surface should be investigated through experiments. In order to minimize the distortion of a 2D image, the correction matrix according to the sloped angle is proposed and obtained by analysis of printing errors. An image on the doubly curved surface is printed so as to verify the proposed method. As a practical example, a helmet is chosen for printing images on the curved surface. The practical applicability of the correction matrix is then demonstrated by printing the character images on the surface of the helmet.

Application of numerical models to determine wind uplift ratings of roofs

  • Baskaran, A.;Borujerdi, J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.213-226
    • /
    • 2001
  • Wind uplift rating of roofing systems is based on standardised test methods. Roof specimens are placed in an apparatus with specified table size (length and width) then subjected to the required wind load cycle. Currently, there is no consensus on the table size to be used by these testing protocols in spite of the fact that a table size plays a significant role in evaluating the performance. This paper presents a study with the objective to investigate the impact of table size on the performance of roofing systems. To achieve this purpose, extensive numerical experiments using the finite element method have been conducted to investigate the performance of roofing systems subjected to wind uplift pressures. Numerical results were compared with results obtained from experimental work to benchmark the numerical modeling. Required table size and curves for the determinations of appropriate correction factors are suggested. This has been completed for various test configurations with thermoplastic waterproofing membranes. Development of correction factors for assemblies with thermoset and modified bituminous membranes are in progress. Generalization of the correction factors and its usage for wind uplift rating of roofs will be the focus of a future paper.

Causal Relationship among Bioethanol Production, Corn Price, and Beef Price in the U.S.

  • Seok, Jun Ho;Kim, GwanSeon;Kim, Soo-Eun
    • Environmental and Resource Economics Review
    • /
    • v.27 no.3
    • /
    • pp.521-544
    • /
    • 2018
  • This paper investigates the impact of ethanol mandate on the price relationship between corn and beef using the monthly time-series data from January 2003 through December 2013. In addition, we examine the non-linearity in ethanol, corn, and beef markets. Based on the threshold cointegration test, we find the symmetric relationship in pairs with ethanol production-corn price and ethanol production-beef price whereas there is the asymmetric relationship between prices of corn and beef. Employing the threshold vector error correction and vector error correction models, we also find that the corn price in the U.S is caused by both ethanol production and beef price in a long-run when the beef price is relatively high. On the other hand, the corn price does not cause both ethanol production and beef price in the long run. Findings from this study imply that demanders for corn such as ethanol and beef producers have price leadership on corn producers.