• Title/Summary/Keyword: correction factors

Search Result 847, Processing Time 0.026 seconds

Effects of Bank Macroeconomic Indicators on the Stability of the Financial System in Indonesia

  • VIPHINDRARTIN, Sebastiana;ARDHANARI, Margaretha;WILANTARI, Regina Niken;SOMAJI, Rafael Purtomo;ARIANTI, Selvi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.647-654
    • /
    • 2021
  • This study examines the non-performing loans of rural banks and macroeconomic factors in Indonesia, including inflation, exchange rates, and interest rates. Theoretically, the existence of erratic macroeconomic conditions can affect the level of non-performing credit risk in rural credit banks in Indonesia. The effect of macroeconomic conditions on non-performing loans has a different response for each economic sector. The main objective of this study is to determine the effect of macroeconomic factors (inflation, exchange rates, and interest rates) and bank-specific factors (credit) on the Non-Performing Loans (NPL) of Rural Banks in Indonesia for the period from January 2015 to December 2018. This study uses a Vector Error Correction Model (VECM) estimation to determine the effect of independent variables consisting of macroeconomic factors and bank-specific factors. Based on the estimation results of the Vector Error Correction Model, three variables that have a positive and significant effect on long-term non-performing loans are credit, inflation, and interest rates. Meanwhile, in the short term, there are only two variables that have a positive and significant effect on non-performing loans, namely, credit and interest rates. Inflation and exchange rate variables have a negative and insignificant effect on bad credit in the short term.

Segmental Deformity Correction after Balloon Kyphoplasty in the Osteoporotic Vertebral Compression Fracture

  • Lee, Jung-Hoon;Kwon, Jeong-Taik;Kim, Young-Baeg;Suk, Jong-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.371-376
    • /
    • 2007
  • Objective : Balloon kyphoplasty can effectively relieve the symptomatic pain and correct the segmental deformity of osteoporotic vertebral compression fractures. While many articles have reported on the effectiveness of the procedure, there has not been any research on the factors affecting the deformity correction. Here, we evaluated both the relationship between postoperative pain relief and restoration of the vertebral height, and segmental kyphosis, as well as the various factors affecting segmental deformity correction after balloon kyphoplasty. Methods : Between January 2004 and December 2006, 137 patients (158 vertebral levels) underwent balloon kyphoplasty. We analyzed various factors such as the age and sex of the patient, preoperative compression ratio, kyphotic angle of compressed segment, injected PMMA volume, configuration of compression, preoperative bone mineral density (BMD) score, time interval between onset of symptom and the procedure, visual analogue scale (VAS) score for pain rating and surgery-related complications. Results : The mean postoperative VAS score improvement was $4.93{\pm}0.17$. The mean postoperative height restoration rate was $17.8{\pm}1.57%$ and the kyphotic angle reduction was $1.94{\pm}0.38^{\circ}$. However, there were no significant statistical correlations among VAS score improvement, height restoration rate, and kyphotic angle reduction. Among the various factors, the configuration of the compressed vertebral body (p=0.002) was related to the height restoration rate and the direction of the compression (p=0.006) was related with the kyphotic angle reduction. The preoperative compression ratio (p=0.023, p=0.006) and injected PMMA volume (p<0.001, p=0.035) affected both the height restoration and kyphotic angle reduction. Only the preoperative compression ratio was found to be as an independent affecting factor (95% CI : 1.064-5.068). Conclusion : The two major benefits of balloon kyphoplasty are immediate pain relief and local deformity correction, but segmental deformity correction achieved by balloon kyphoplasty does not result in additional pain relief. Among the factors that were shown to affect the segmental deformity correction, configuration of the compressed vertebral body, direction of the most compressed area, and preoperative compression ratio were not modifiable. However, careful preoperative consideration about the modifiable factor, the PMMA volume to inject, may contribute to the dynamic correction of the segmental deformity.

Influences of hygrothermal environment and fiber orientation on shear correction factor in orthotropic composite beams

  • Soumia Benguediab;Fatima Zohra Kettaf;Mohammed Sehoul;Fouad Bourada;Abdelouahed Tounsi;Mohamed Benguediab
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.151-165
    • /
    • 2023
  • In this study, a simple method for the determination of the shear correction factor for composites beam with a rectangular cross section is presented. The plane stress elasticity assumption is used after simplifications of the expression of the stress distribution in the beam. The different fiber orientation angle and volume fraction are considered in this work. The studied structure is subjected to various loading type (thermal and hygrothermal). The numerical results obtained show that there is a dependence of the shear coefficient on the orientation of the fibers. The evolution of the shear correction factors depends not only on the orientation of the fibers and also on the volume fraction and the environment. the advantage of this developed formula of the shear correction factor is to obtain more precise results and to consider several parameters influencing this factor which are neglected if the latter is constant.

A Study on the Determination of the Performance Correction Factors of Solid Rocket Motors (고체추진기관의 성능 보정계수 예측방법에 관한 연구)

  • 성홍계;변종렬;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.57-66
    • /
    • 2001
  • The precise prediction of the performance is essential to develope the system at the development of propulsion system since no experimental data are available. The accuracy of 1on the total system's performance as well as itself, which depends on how the correction fac $I_{sp}$, and so on, are determined in accurate. However some of the design factors are dete engineer's experience or the similar test data if they are available, so far. This study was the method of the determination of correction factors of both $I_{sp}$ and thrust in direct. The bas is to define the detail performance loss mechanism of solid rocket motors, might be occurre and to calculate in quantitative those correction factors from the performance loss mechanism the test results, the model of this study can predict those factors less than 1% error, in additi physical variances of each loss mechanism.

  • PDF

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

THE CORRECTION OF SECONDARY CLEFT LIP DEFORMITIES (이차구순열 결손의 치료)

  • Park, In-Soon;Yeo, Hwan-Ho;Kim, Young-Kyun;Kim, Su-Gwan;Gi, Jae-Hyu;Lim, Seok-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.2
    • /
    • pp.135-142
    • /
    • 1997
  • Despite the current accomplishments with the repair of cleft lips, the surgical management of the nasal deformity remains a functional and aesthetic dilemma for patients, their families, and reconstructive surgeons. Recent improvements in the understanding and technical execution of te primary cleft lip repair have significantly reduced secondary sequelae and the consequent need for secondary surgical correction. But, secondary surgical corrections are necessary according to numerous factors. Such factors include the secondary surgical corrections are necessary according to numerous factors. Such factors include the severity of the initial deformity, the surgical plan, precision of execution of the primary repair, and success of the postoperative management. We preformed the secondary correction of cleft lip and palate in 11 patients via various methods. In conclusion, primary repair of cleft lip and palate patients is the most important to prevent the secondary deformities, and most of cleft lip and palate with secondary deformities must be treated with combined cheiloplasty and rhinoplasty.

  • PDF

A Selection of Atmospheric Correction Methods for Water Quality Factors Extraction from Landsat TM Image (Landsat TM 영상으로부터 수질인자 추출을 위한 대기 보정 방법의 선정)

  • Yang, In-Tae;Kim, Eung-Nam;Choi, Youn-Kwan;Kim, Uk-Nam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.101-110
    • /
    • 1999
  • Recently, there are a lot of studies to use a satellite image data in order to investigate a simultaneous change of a wide range area as a lake. However, in many cases of the water quality research there is one problem occured when extracting the water quality factors from the satellite image data because the atmosphere scattering exert a bad influence on a result of analysis. In this study, an attempt was made to select the relative atmospheric correction method, extract the water quality factors from the satellite image data. And also, the time-series analysis of the water quality factors was performed by using the multi-temporal image data.

  • PDF

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

Dependence Evaluation of the Self-Absorption Correction Factor for p-type High Purity Germanium Detector Characteristics (p-type HPGe 검출기 특성에 따른 밀도 보정인자 의존도 평가)

  • Jang, Mee;Ji, Young-Yong;Kim, Chang-Jong;Lee, Wanno;Kang, Mun Ja
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • The precise determination of the activity for each radionuclide in environmental samples requires the self-absorption correction factor. In this research, we derived the self-absorption correction factor for three p-type high purity germanium detectors using the Monte Carlo code MCNPX. These detectors have different characteristics such as crystal diameter, height and size of the core. We compared the calculated full-energy peak efficiency with the experimental value using a standard sample with $1g/m^3$ density and verified the modeling. We simulated the dependency of the full-energy peak efficiency on the 0.3, 0.6, 0.9, 1.0, 1.2 and $1.5g/m^3$ samples and obtained the corresponding self-absorption correction factor. The self-absorption correction factors calculated for the three detectors differ by less than 1% over most of the energy range and sample densities considered. This indicates that the self-absorption correction factors are independent of the crystal characteristics of HPGe detector.