• 제목/요약/키워드: correction by heating

검색결과 30건 처리시간 0.026초

블록 리프팅 후 갑판 교정가열의 잔존 효율 연구 (A Study for Remained Efficiency of Correction Heating after Block Lifting)

  • 하윤석;원석희;이명수
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.118-125
    • /
    • 2008
  • The deck plates of ship block is made of thin plates in their construction. A main reason of using thin plates is that deck plates don't need to support large structural loads. Therefore, out-of-plane deformations between stiffeners are frequent in deck blocks. Because these are got right by correction heating, they continuously causes quality problems in the final dock-building process. According to preceding research, the lifting process by cranes would offset the effect of correction heating. This study finds out the remained efficiency of correction heating when tensional loads are added by a lifting to corrected parts. We used inherent strains in calculating the efficiency, and established the methodology where the positions for callings are. For getting more accurate positions, besides the structural lifting analysis, welding deformation analysis with upper block and measured data from a serial ship are also referenced.

  • PDF

고유변형도 기반 등가하중법에 의한 보강판의 가열 교정 해석 (Analysis of Correction of Welding Deformation of Stiffened Plate by Heating Using Equivalent Loading Method based on Inherent Strain)

  • 송하철;류현수;장창두
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of the present paper is to develop an analysis method for the correction of welding deformation of stiffened plate by line heating. In this paper, the equivalent loading method, based on the inherent strain theory, was used to analyze the heat-straightening of a stiffened plate. Equivalent loads were obtained by integrating the inherent strains which were determined from the highest temperature and the degree of restraint. Finally, the obtained equivalent loads were imposed, as applied loads, on the elastic analysis for the prediction of correction of welding deformation in stiffened plate. The proposed method is expected as a basic study in heat-straightening analysis of welding deformation in large scale block.

Numerical studies of the effect of residual imperfection on the mechanical behavior of heat-corrected steel plates, and analysis of a further repair method

  • Chun, Pang-Jo;Inoue, Junya
    • Steel and Composite Structures
    • /
    • 제9권3호
    • /
    • pp.209-221
    • /
    • 2009
  • Heating correction, through heating and flattening a structure with a pressing machine, is the in-situ method used to repair buckled steel structures. The primary purpose of this investigation is to develop an FEM model which can predict the mechanical response of heat-corrected plates accurately. Our model clarifies several unsolved problems. In previous research, the location of the imperfection was limited to the center of the specimen although the mechanical behavior is strongly affected by the location of the imperfection. Our research clarifies the relationship between the location of the imperfection and the mechanical behavior. In addition, we propose further reinforcement methods and validate their effectiveness. Our research concludes that the strength of a buckled specimen can be recovered by heating correction and the use of an adequate stiffener.

알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究 (A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • 제10권1호
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

AMOLED 에이징 챔버 신호 생성 및 가열 시스템 (AMOLED Aging Chamber Signal Generation and Heating System)

  • 이병권;조광희;정회경
    • 한국정보통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.861-866
    • /
    • 2018
  • OLED(Organic Light-Emitting Diode) 제조에서 에이징(aging) 공정은 제조 효율을 높이고 에이징 보정을 위한 보정 값을 측정한다. OLED의 에이징 보정을 위한 보정 값은 구동 신호에 적용할 수 있다. OLED 에이징 공정은 미리 설정된 구동신호와 온도에 의해 정해진 시간 동안 빛을 출력한 후 전류를 측정한다. OLED 제조 공정에서 증착 및 기온에 의해 균일하지 않은 것에 대해 에이징을 가하는 것이다. 이 시간이 OLED 효율 감소에 미치는 영향은 거의 없다. 에이징을 위해 필요한 조건을 만들기 위해 가열장치와 신호 생성 시스템이 요구된다. 가열장치와 신호 생성 시스템에 의해 측정된 결과값은 OLED 제조에서 전력 요구사항, 균일성, 효율성을 평가하는 근거로 사용할 수 있다. 이에 본 논문에서는 실용적인 OLED 에이징 보정을 위한 구동 신호 생성 및 가열 시스템의 연동을 위한 구성을 제안하고 이를 구현하였다.

국부가열용 고주파 유도가열 특성에 관한 연구 (A Study on Characteristic of High Frequency Induction Heating for Local Heating)

  • 진형국;이동주;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.60-60
    • /
    • 2010
  • Since the curved hull plate was made by a series of manufacturing process including cold bending, manual local heating and correction work, the accuracy of curved plate strongly depends on the proficiency of worker. So the demands on the automatic local heating system for curved hull plate have continuously increased and the various researches relevant to it have been performed. Generally, the heat sources used for local heating were flame and induction heat. In terms of initial cost, flame heating is in a better favorable position than induction heating. However, from the viewpoint of the control of heat, induction heating has more advantage. So the various researches related to apply the induction heating to the automatic forming system has been performed. The purpose of this study is to establish the proper capacity of high frequency induction heating system for forming the curved hull plate. In order to do it, the proper coil shape for local heating was designed and the efficiency of induction heating system was determined by comparing of temperature results obtained by FEA and experiment. With the results, the extensive FEA was performed to identify the effect of heated plate dimension, cooling method and the capacity of induction heating system on the amount of heat loss introduced by induction heating. Based on the results, the proper capacity of high frequency induction heating system was proposed.

  • PDF

PFC 및 CCR에 의한 항공조명용 전원공급장치의 개발 (A Power Supply System for Lighting of Aerodromes by Using Power Factor Correction and Constant Current Regulator)

  • 손진근
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2150-2156
    • /
    • 2007
  • According as level of industry develops day after day, electricity load system of industry requires high level control, effectiveness and high efficiency. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting and electric heating system. But, problems that power factor deterioration and fast response of control, efficiency, harmonics and etc are still remain. Therefore, in this paper proposed an inverter systems with constant current regulation and power factor correction (PFC) circuit for lighting and beaconing of aerodromes. The effectiveness of the proposed system confirmed through experimental results of 10[kW] power supply system.

Consideration of Temperature and Slip Correction for Photothermal Spectrometry

  • Lee, Jeonghoon
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.86-90
    • /
    • 2015
  • Temperature was considered to estimate the minimum detectable absorption coefficient of aerosol particles from photothermal spectroscopy. Light energy absorbed by subsequent emission from the aerosol results in the heating of the aerosol sample and consequently causes a temperature change as well as changes in thermodynamic parameters of the sample. This thermal effect is the basis of photothermal spectroscopy. Photothermal spectroscopy has several types of techniques depending on how the photothermal effects are detected. Photothermal interferometry traces the photothermal effect, refractive index, using an interferometer. Photoacoustic spectroscopy detects the photothermal effect, sound wave, using a microphone. In this study, it is suggested that the detection limit for photothermal spectroscopy can be influenced by the introduction of a slip correction factor when the light absorption is determined in a high temperature environment. The minimum detectable absorption coefficient depends on the density, the specific heat and the temperature, which are thermodynamic properties. Without considering the slip correction, when the temperature of the environment is 400 K, the minimum detectable absorption coefficient for photothermal interferometry increases approximately 0.3% compared to the case of 300 K. The minimum detectable absorption coefficient for photoacoustic spectroscopy decreases only 0.2% compared to the case of 300 K. Photothermal interferometry differs only 0.5% point from photoacoustic spectroscopy. Thus, it is believed that photothermal interferometry is reliably comparable to photoacoustic spectroscopy under 400 K.

Improvement of the critical heat flux correlation in a thermal-hydraulic system code for a downward-flow narrow rectangular channel

  • Wisudhaputra, Adnan;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3962-3973
    • /
    • 2022
  • Several critical heat flux (CHF) correlations including the look-up table in the MARS code have been assessed for the prediction of CHF in a downward-flow narrow rectangular channel. For the assessment, we built an experiment database that covers pressures between 1.01 and 39.0 bar, gap sizes between 1.09 and 6.53 mm, mass fluxes up to 25,772 kg/m2s, and under one-sided and two-sided heating conditions. The results of the assessment showed that the Kaminaga correlation has the best overall prediction compared to others. However, because the correlation uses global variables, such as inlet and outlet subcooling and total heat transfer area, it is difficult to use in a system code. A new CHF correlation is then proposed by replacing the global variables in the Kaminaga correlation with local ones and adding correction factors to consider the effect of gap size, mass flux, and the number of heating walls. Additional correction factor is added to consider the effect of inlet subcooling. It is shown that the new one is better than the Kaminaga correlation and it is easy to implement to any system code.

초등학교급식 식단에 대한 조리공정별 HACCP에 관한 연구 (A Study on Hazard Analysis and Critical Control Points(HACCP) in School Lunch by Analyzing Food Cooking Processes)

  • 빈성오;김문주
    • 한국학교ㆍ지역보건교육학회지
    • /
    • 제8권2호
    • /
    • pp.79-95
    • /
    • 2007
  • A study was conducted in order to develope HACCP model in school lunch in Korea. Results: 1. Of 22 menus 4(18%) were non heating processes (#1), 2(9%) were food handling by using hands (#2), and 16(73%) were heating processes (#3). Of 279 menus 36(12.9%) belong to process #1, 8(2.9%) to process #2, and 235(84%) to process #3. 2. The critical control points for process #1 were contamination by hands of food handlers, and unsanitary food preparation habits of food handlers. Those for process #2 were improper heating temperature, contaminations by food handlers' hands, and unsanitary food handling habits, and cross contamination by unclean utensils and equipment. 3. Management criteria for the CCPs were conditions of food storage, refrigeration, freezing, food cooking temperature, personal hygiene, washing and sanitization of utensils and equipment. 4. Monitoring criteria for CCPs were observation, temperature checking, inspection of utensils and equipment, and practice of good personal hygiene. 5. Corrective actions were refusal of unsafe products, correction of improper temperature, proper cleaning and sanitization, and proper reheating time and temperature.

  • PDF