• Title/Summary/Keyword: corporate credit rating

Search Result 57, Processing Time 0.025 seconds

LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction (시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례)

  • Lee, Hyun-Sang;Oh, Sehwan
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.

Comparisons of the corporate credit rating model power under various conditions (기준값 변화에 따른 기업신용평가모형 성능 비교)

  • Ha, Jeongcheol;Kim, Soojin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1207-1216
    • /
    • 2015
  • This study aims to compare the model power in developing corporate credit rating models and to suggest a good way to build models based on the characteristic of data. Among many measurement methods, AR is used to measure the model power under various conditions. SAS/MACRO is in use for similar repetitions to reduce time to build models under several combination of conditions. A corporate credit rating model is composed of two sub-models; a credit scoring model and a default prediction model. We verify that the latter performs better than the former under various conditions. From the result of size comparisons, models of large size corporate are more powerful and more meaningful in financial viewpoint than those of small size corporate. As a corporate size gets smaller, the gap between sub-models becomes huge and the effect of outliers becomes serious.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Development of Intelligent Credit Rating System using Support Vector Machines (Support Vector Machine을 이용한 지능형 신용평가시스템 개발)

  • Kim Kyoung-jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1569-1574
    • /
    • 2005
  • In this paper, I propose an intelligent credit rating system using a bankruptcy prediction model based on support vector machines (SVMs). SVMs are promising methods because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. This study examines the feasibility of applying SVM in Predicting corporate bankruptcies by comparing it with other data mining techniques. In addition. this study presents architecture and prototype of intelligeht credit rating systems based on SVM models.

Bond Ratings, Corporate Governance, and Cost of Debt: The Case of Korea

  • Han, Seung-Hun;Kang, Kichun;Shin, Yoon S.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.3 no.3
    • /
    • pp.5-15
    • /
    • 2016
  • This study examines whether Korean rating agencies such as Korea Investors Service (KIS), National Information & Credit Evaluation (NICE), and Korea Ratings Corporation (KR), incorporate corporate governance into their corporate bond ratings in Korea. We find that the Korean rating agencies assign higher ratings to the bonds issued by Chaebol (Korean business group) affiliated firms. Our results also indicate that those rating agencies give higher ratings to the bonds with greater foreign investor share ownership. Moreover, if the rating agencies value corporate governance, higher rated firms should issue bonds at lower yield to maturity. We discover that Chaebol affiliation is counted favorably by the rating agencies. We find that investors are willing to pay lower risk premium for bonds with higher institutional ownership, but higher risk premium to bonds with greater equity ownership in the form of depository receipts. Therefore, even if the rating agencies and investors in Korea consider corporate governance (Chaebol affiliation and ownership structure) an important determinant in bond ratings and the yields to maturity, they have opposite views on institutional ownership and share ownership in the form of depository receipts.

The Effect of Customer Satisfaction on Corporate Credit Ratings (고객만족이 기업의 신용평가에 미치는 영향)

  • Jeon, In-soo;Chun, Myung-hoon;Yu, Jung-su
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • Nowadays, customer satisfaction has been one of company's major objectives, and the index to measure and communicate customer satisfaction has been generally accepted among business practices. The major issues of CSI(customer satisfaction index) are three questions, as follows: (a)what level of customer satisfaction is tolerable, (b)whether customer satisfaction and company performance has positive causality, and (c)what to do to improve customer satisfaction. Among these, the second issue is recently attracting academic research in several perspectives. On this study, the second issue will be addressed. Many researchers including Anderson have regarded customer satisfaction as core competencies, such as brand equity, customer equity. They want to verify following causality "customer satisfaction → market performance(market share, sales growth rate) → financial performance(operating margin, profitability) → corporate value performance(stock price, credit ratings)" based on the process model of marketing performance. On the other hand, Insoo Jeon and Aeju Jeong(2009) verified sequential causality based on the process model by the domestic data. According to the rejection of several hypotheses, they suggested the balance model of marketing performance as an alternative. The objective of this study, based on the existing process model, is to examine the causal relationship between customer satisfaction and corporate value performance. Anderson and Mansi(2009) proved the relationship between ACSI(American Customer Satisfaction Index) and credit ratings using 2,574 samples from 1994 to 2004 on the assumption that credit rating could be an indicator of a corporate value performance. The similar study(Sangwoon Yoon, 2010) was processed in Korean data, but it didn't confirm the relationship between KCSI(Korean CSI) and credit ratings, unlike the results of Anderson and Mansi(2009). The summary of these studies is in the Table 1. Two studies analyzing the relationship between customer satisfaction and credit ratings weren't consistent results. So, in this study we are to test the conflicting results of the relationship between customer satisfaction and credit ratings based on the research model considering Korean credit ratings. To prove the hypothesis, we suggest the research model as follows. Two important features of this model are the inclusion of important variables in the existing Korean credit rating system and government support. To control their influences on credit ratings, we included three important variables of Korean credit rating system and government support, in case of financial institutions including banks. ROA, ER, TA, these three variables are chosen among various kinds of financial indicators since they are the most frequent variables in many previous studies. The results of the research model are relatively favorable : R2, F-value and p-value is .631, 233.15 and .000 respectively. Thus, the explanatory power of the research model as a whole is good and the model is statistically significant. The research model has good explanatory power, the regression coefficients of the KCSI is .096 as positive(+) and t-value and p-value is 2.220 and .0135 respectively. As a results, we can say the hypothesis is supported. Meanwhile, all other explanatory variables including ROA, ER, log(TA), GS_DV are identified as significant and each variables has a positive(+) relationship with CRS. In particular, the t-value of log(TA) is 23.557 and log(TA) as an explanatory variables of the corporate credit ratings shows very high level of statistical significance. Considering interrelationship between financial indicators such as ROA, ER which include total asset in their formula, we can expect multicollinearity problem. But indicators like VIF and tolerance limits that shows whether multicollinearity exists or not, say that there is no statistically significant multicollinearity in all the explanatory variables. KCSI, the main subject of this study, is a statistically significant level even though the standardized regression coefficients and t-value of KCSI is .055 and 2.220 respectively and a relatively low level among explanatory variables. Considering that we chose other explanatory variables based on the level of explanatory power out of many indicators in the previous studies, KCSI is validated as one of the most significant explanatory variables for credit rating score. And this result can provide new insights on the determinants of credit ratings. However, KCSI has relatively lower impact than main financial indicators like log(TA), ER. Therefore, KCSI is one of the determinants of credit ratings, but don't have an exceedingly significant influence. In addition, this study found that customer satisfaction had more meaningful impact on corporations of small asset size than those of big asset size, and on service companies than manufacturers. The findings of this study is consistent with Anderson and Mansi(2009), but different from Sangwoon Yoon(2010). Although research model of this study is a bit different from Anderson and Mansi(2009), we can conclude that customer satisfaction has a significant influence on company's credit ratings either Korea or the United State. In addition, this paper found that customer satisfaction had more meaningful impact on corporations of small asset size than those of big asset size and on service companies than manufacturers. Until now there are a few of researches about the relationship between customer satisfaction and various business performance, some of which were supported, some weren't. The contribution of this study is that credit rating is applied as a corporate value performance in addition to stock price. It is somewhat important, because credit ratings determine the cost of debt. But so far it doesn't get attention of marketing researches. Based on this study, we can say that customer satisfaction is partially related to all indicators of corporate business performances. Practical meanings for customer satisfaction department are that it needs to actively invest in the customer satisfaction, because active investment also contributes to higher credit ratings and other business performances. A suggestion for credit evaluators is that they need to design new credit rating model which reflect qualitative customer satisfaction as well as existing variables like ROA, ER, TA.

  • PDF

Influence of Global versus Local Rating Agencies to Japanese Financial Firms

  • Han, Seung Hun;Reinhart, Walter J.;Shin, Yoon S.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.9-20
    • /
    • 2018
  • Global rating agencies, such as Moody's and S&P, have assigned credit ratings to corporate bonds issued by Japanese firms since 1980s. Local Japanese rating agencies, such as R&I and JCR, have more market share than the global raters. We examine the yield spreads of 1,050 yen-denominated corporate bonds issued by financial firms in Japan from 1998 to 2014 and find no evidence that bonds rated by at least one global agency are associated with a significant reduction in the cost of debt as compared to those rated by only local rating agencies. Unlike non-financial firms, the reputation effect of global rating agencies does not exist for Japanese financial firms. We also observe that firms with less information asymmetry are more likely to acquire ratings from Moody's or S&P. Additionally, the firm's financial profile does not affect its choice to seek out ratings from global raters. Our findings are contradictory to those by Han, Pagano, and Shin (2012), who employ bonds issued by non-financial firms in Japan. Our conjecture is that the asymmetric nature of financial firms makes investors less likely to depend on a credit risk assessment by rating agencies in determining the yields of new bonds.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

The Effects of Enterprise Value and Corporate Tax on Credit Evaluation Based on the Corporate Financial Ratio Analysis (기업 재무비율 분석을 토대로 기업가치 및 법인세가 신용평가에 미치는 영향)

  • Yoo, Joon-soo
    • Journal of Venture Innovation
    • /
    • v.2 no.2
    • /
    • pp.95-115
    • /
    • 2019
  • In the context of today's business environment, not only is the nation or company's credit rating considered very important in our recent society, but it is also becoming important in international transactions. Likewise, at this point of time when the importance and reliability of credit evaluation are becoming important at home and abroad, this study analyzes financial ratios related to corporate profitability, safety, activity, financial growth, and profit growth to study the impact of financial indicators on enterprise value and corporate taxes on credit evaluation. To proceed with this, the financial ratio of 465 companies of KOSPI securities listed in 2017 was calculated and the impact of enterprise value and corporate taxes on credit evaluation was analyzed. Especially, this further study tried to derive a reliable and consistent conclusion by analyzing the financial data of KOSPI securities listed companies for eight years from 2011, which is the first year of K-IFRS introduction, to 2018. Research has shown that the significance levels among variables that show the profitability, safety, activity, financial growth, and profit growth of each financial ratio were significant at the 99% level, except for the profit growth. Validation of the research hypothesis found that while the profitability of KOSPI-listed companies significantly affects corporate value and income tax, indicators such as safety ratio and growth ratio do not significantly affect corporate value and income tax. Activity ratio resulted in significant effects on the value of enterprise value but not significant impacts on income taxes. In addition, it was found that the enterprise value has a significant effect on the company's credit and corporate income taxes, and that corporate income taxes also have a significant effect on the corporate credit evaluation, and this also shows that there is a mediating function of corporate tax. And as a result of further study, when looking at the financial ratio for eight years from 2011 to 2018, it was found that two variables, KARA and LTAX, are significant at a 1% significant level to KISC, whereas LEVE variables is not significant to KISC. The limitation of this study is that credit rating score and financial score cannot be said to be reliable indicators that investors in the capital market can normally obtain, compared to ranking criteria for corporate bonds or corporate bills directly related to capital procurement costs of enterprise. Above all, it is necessary to develop credit rating score and financial score reflecting financial indicators such as business cash flow or net assets market value and non-financial indicators such as industry growth potential or production efficiency.

Probability of default validation in a corporate credit rating model (국내모회사와 해외자회사 신용평가모형의 적합성 검증 연구)

  • Lee, Woosik;Kim, Dong-Yung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.605-615
    • /
    • 2017
  • Recently, financial supervisory authority of Korea and international credit rating agencies have been concerned about a stand-alone rating that is calculated without incorporating guaranteed support of parent companies. Guaranteed by parent companies, most foreign subsidiaries keeps good credit rate in spite of weak financial status. However, what if the parent companies stop supporting the foreign subsidiaries, they could have a probability to go bankrupt. In this paper, we have validated a credit rating model through statistical measurers such as performance, calibration, and stability for Korean companies owning foreign subsidiaries.