• 제목/요약/키워드: cornering stability

검색결과 43건 처리시간 0.048초

브레이크HILS를 이용한 능동 요모멘트 제어 알고리즘의 평가 (Evaluation of A Direct Yaw Moment Control Algorithm by Brake Hardware-In-The -Loop Simulation)

  • 류제하;김호수
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.172-179
    • /
    • 1999
  • This paper presents a simple but effective DYC algorithm which enhances vehicle lateral stability by using an anti=lock brake system (ABS). In the proposed algorithm, only the front outer wheel is controlled during cornering maneuver instead of controlling all four wheels because the wheel has the largest role in DYC and it is easy and simple to control the only one wheel. An ABS Hardware - In -The -Loop Simulation ( HILS) system that may be used to realistically test real vehicle dynamic behavior in a lab is used for evaluating the proposed DYC algorithm in severe situations where a vehicle is destabilized without DYC . The HILS results show that the proposed DYC algorithm has the potential of maintaining vehicle stability in some dangerous situations.

  • PDF

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.

차량 선회 안정성을 위한 휠 슬립 제어시스템 개발 (Development of a Wheel Slip Control System for Vehicle Cornering Stability)

  • 홍대건;허건수;황인용;선우명호
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가 (Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System)

  • 김병수;문병영
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

차량 운전조건과 속도변화를 고려한 요우모멘트제어 (The Direct Yaw-Moment Control regarding to control the vehicle handling condition)

  • 장영진;남광희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.69-70
    • /
    • 2013
  • By using differential force between left and right wheel, lateral motion can be controlled known as Direct Yaw-moment Control (DYC). In previous researches, DYC control is proposed to increase the stability of the vehicle, but maneuverability has not been discussed sufficiently. The car handling condition which is called the index parameter of maneuverability is dependent on the vehicle velocity and steering angle. To achieve the desired vehicle's cornering path, the car handling condition must be considered sufficiently. In this paper, the novel DYC method is proposed which gives the car handling condition regardless of the longitudinal speed. The proposed controller is based on the PI controller to feedback the curvature parameter. The controlled system shows the advantages of DYC regarding to the reference trajectory by the dual motor system. With respect to the uncontrolled model, the effectiveness of the proposed method is validated by numerical examples.

  • PDF

4륜 조향 무인 컨테이너 차량(AGV) 시스템의 동특성 분석 (Analysis of Dynamic Characteristics for Four-Wheel-Steering Automated Guided Vehicle(AGV) System)

  • 최재영;이영진;변성태;이권순;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.306-306
    • /
    • 2000
  • This paper analyze the dynamic characteristics of Automated Guided Vehicle(AGV) which is being developed as a part of automation in port through DADS, one of the multi-dynamic analysis program, Previous evaluation of a vehicle is carried out through the continuous driving test of a real vehicle, however this method raise the loss of finance and time. If it is possible to analyze the dynamic characteristics of vehicle before construction completely we can compensate the loss of money and time during constructing. AGV contained containers is very heavy and its center of gravity can be easily changed with the disturbance from road or cornering. It makes AGV unsatisfied, therefore we evaluate the handling characteristics and stability of the full vehicle model. This paper contribute to establish the foundation of the development of a new system like a AGV which have a special structure.

  • PDF

차량의 조종안정성 향상을 위한 토 궤적 및 부싱 강성 선정 (Selection of toe geometry and bushing stiffness to improve the Vehicle Handing Characteristics)

  • 손정현;김광석;유완석
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.186-193
    • /
    • 1999
  • In this paper, a full vehicle model is developed to analyze toe and camber changes due to rack height variation and compliance. The AutoDyn7 program developed in G7 project is used for the computer simulation. Steady state cornering test was done to find the understeer gradient. Imposing a pulse steer input, Frequency Response Function(FRF) of yaw rate and lateral accelerations were evaluated. To verify the stability, the rhombus using four parameters is employed. Steer characteristics were evaluated by changing the rack height and the bushing lateral stiffiness. which installed between the low control arm and the chassis.

  • PDF

토션빔의 단면형상에 다른 현가계의 구조적 특성과 롤 거동에 관한 연구 (A study on the structural characteristics and roll behavior of suspension for the section profile of torsion beam)

  • 이동찬;변준형
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.195-202
    • /
    • 1999
  • The kinematic and complicance characteristics of torsion beam axle is structurally related to the location and section profile of torsion beam and the span from body mounting point to wheel center. This paper presents the effect of section properties in torsion beam on the structural characteristics and roll behavior of suspension. The structural characteristics is on the maximum stress on the welding area of torsion beam and the roll behavior is on roll steer and roll-camber of suspension which are important for controllability and stability in cornering. Four factors are used for the section design of torsion beam, which are thickness , midline length, are inner radius, and sector half angle . Through the structural and quasi-static analysis made for six torsion beam axle models, it can be noticed that roll steer and the structural durability of suspension are closely related to warping constant and shear center in section properties of torsion beam.

  • PDF

다구찌 직교배열법을 이용한 포뮬러 레이스카 전륜 업라이트의 최적설계 (Optimal Design of the Front Upright of Formula Race Car Using Taguchi's Orthogonal Array)

  • 장운근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.112-118
    • /
    • 2013
  • Formula race car is generally recognized as a vehicle which is optimally designed for on-road race track with the regulations of race host bodies. Especially, the uprights of suspension system decisively have effects on the performance of cornering and stability of race car's driving performance, which are very important factors in the design of race car. This paper is a study of optimal upright design of F1800 grade formula race car which are normally used in professional race circuit in Korea. To design optimally the front upright of F1800 formula race car, Taguchi's orthogonal array, which is known for more useful method than full factorial design experimental method in cost and time, is used with CAE method such as FEM analysis. And the result of this paper shows that Taguchi's orthogonal array employed for this optimal design is very useful for designing the front upright of race car by minimizing its weight as well as keeping its safety factor as enough as designer wants in the view of quality, cost and delivery at the early design step.

차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발 (Development of a Control Method of Traction Control System Using Vehicle Model)

  • 송정훈;김흥섭;이대희;손민혁
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.