• Title/Summary/Keyword: core wall

Search Result 447, Processing Time 0.024 seconds

Development of PC Double Wall for Staircase Construction (계단실 공사를 위한 PC Double Wall 공법 개발)

  • Suh, Jung-Il;Park, Hong-Gun;Hwang, Hyeon-Jong;Im, Ju-Hyuk;Kim, Yong-Nam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.571-581
    • /
    • 2014
  • In the present study, hollow precast concrete wall (PC Double Wall) for staircase construction was developed. Comparing the conventional walls, the PC Double Wall can be reduced the lift weight using hollow core and improves the integrity between the PC members. The cross-section and re-bar details of the PC Double Wall were developed considering precast concrete manufacturing, constructability, and the structural safety. Particularly, a form system was developed to manufacture thin and hollow core PC wall efficiently. A mock-up test for a staircase using the PC Double wall was performed to verify the constructability and integrity of the PC walls. The test result verified that joint deformation and cracking did not occur as showing good constructability.

INFLUENCE OF VARIOUS PROPERTIES OF POST AND CORE ON THE STRESS DISTRIBUTION IN ENDODONTICALLY TREATED TOOTH (다양한 포스트와 코어의 물성이 근관치료된 치근의 응력분산에 미치는 영향)

  • Cho Jin-Hyun;Lee Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.10-19
    • /
    • 2006
  • Statement of problem : The various kinds of properties of post and core may affect the stress distribution to the root of endodontically treated teeth Purpose: To evaluate the influence of various kinds of properties of post and core to the stress distribution to the root of endodontically treated teeth. Material and methods: Mandibular first premolar, prepared by general shape of post and core with gold crown, was used to two dimensional axisymmetric modeling for finite element analysis. Then property values of 8 different kinds of post and core was substituted for each. Finally, stress distribution shown areas around the root of post and core was analysed after applying 50N of vortical and oblique load. Results: 1. Stress value of oblique load was much higher than the maximum stress value of vertical load. 2. Under oblique load, very concentrated stress was located on post periapical area and variations in stress were very severe. Contrary to this, stress distribution was relatively uniform in vertical load. 3. Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. 4. Stress change according to the properties of core was shown only in the cervical area of post and below core as the higher elastic modulus, then increased in stress. 5. Post and core with medium value of elastic modulus showed relatively uniform stress distribution. Conclusions: Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. Stress change according to the properties of core was shown only in the cervical area of post and below core.

Slow release of microencapsulated model compounds of insect pheromone using low molecular weight polyethylene and urea-formaldehyde resin (저분자량 polyethylene과 urea-formaldehyde 수지를 이용한 microencapsulation에 의한 곤충 페로몬의 model 화합물들의 slow release)

  • Kim, Jung-Han;Oh, Won-Taek;Kim, Yong-Jin
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.110-116
    • /
    • 1991
  • As the model compounds, citral and n-octanol which possess similar characteristics and structures of low molecular weight insect pheromones and $({\pm})-5-hydroxy-4-methyl-heptan-3-one$ which shows the aggregation pheromones activity of the rice weevil and the maize weevil were microencapsulated with low molecular weight polyethylene(LMPE) and urea-formaldehyde resin as wall materials. The core materials were microencapsulated as small particles in LMPE and urea-formaldehyde resin polymers and the microencapsulated polymers were white powders. And the polymer made from urea-formaldehyde resin was better than that from LMPE as wall material. The slow releasing effect and the releasing patten of the microencapsulated core materials were examined by solvent extraction method and headspace sampling method. Citral and n-octanol and $({\pm})-5-hydroxy-4-methyl-heptan-3-one$ were release more than 40 days and 15 days, respectively. The releasing pattern of urea-formaldehyde resin microcapsules showed rather smooth decrease than that of LMPE and was maintained at steady level longer.

  • PDF

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

Efficient dynamic analysis of shear wall building structures with various types of openings (다양한 형태의 개구부를 가진 전단벽식 구조물의 효율적 인 동적 해석)

  • 김현수;이승재;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.329-336
    • /
    • 2003
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were peformed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

Structural behavior of sandwich composite wall with truss connectors under compression

  • Qin, Ying;Chen, Xin;Zhu, Xingyu;Xi, Wang;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.159-169
    • /
    • 2020
  • Sandwich composite wall consists of concrete core attached by two external steel faceplates. It combines the advantage of steel and concrete. The appropriate composite action between steel faceplate and concrete core is achieved by using adequate mechanical connectors. This research studied the compressive behavior of the sandwich composite walls using steel trusses to bond the steel faceplates to concrete infill. Four short specimens with different wall width and thickness of steel faceplate were designed and tested under axial compression. The test results were comprehensively evaluated in terms of failure modes, load versus axial and lateral deformation responses, resistance, stiffness, ductility, strength index, and strain distribution. The test results showed that all specimens exhibited high resistance and good ductility. Truss connectors offer better restraint to walls with thinner faceplates and smaller wall width. In addition, increasing faceplate thickness is more effective in improving the ultimate resistance and axial stiffness of the wall.

Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

Effect of Shear Wall Stiffness on Optimal Location of Core and Offset Outrigger Considering Floor Diaphragm (바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적위치에 대한 전단벽 강성의 영향)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.37-47
    • /
    • 2019
  • The study purposed to investigate the optimal location of core and offset outrigger system considering floor diaphragm. To accomplish this aim, a structure design of 70 stories building was performed by using MIDAS-Gen. And the leading factors of the analysis research were the slab stiffness, the stiffness of shear wall and the outrigger position in plan. Based on the analysis results, we analyzed and studied the influences of the shear wall stiffness and the slab stiffness on optimal location of core and offset outrigger considering floor diaphragm. The results of the analysis study indicated whether the slab stiffness, the stiffness of shear wall and the outrigger position in plan had an any impact on optimal location in outrigger system of tall building. Also the paper results can give help in getting the structural engineering materials for looking for the optimal position of outrigger system in the high-rise building.

A Research on a Comparison between the Strength and Weakness of Each Formwork Methods in the Core Wall Construction (대형 시스템 거푸집 공법별 장단점 비교에 관한 연구)

  • Shin, Han-Woo;Kim, Gwang-Hee;Kim, Jae-Yeob;Cho, Hyung-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.153-159
    • /
    • 2007
  • Recently, as a result of the economic growth, the concentration of population towards the cities and the rise in land prices, the demand for high rise buildings has increased significantly, the trend to build high rise buildings such as the mixed-use development buildings by the domestic construction companies continues. It's very important what kind of form work system is applied on the Core Wall of the high rise buildings to determine the economic efficiency for the whole project. That's because the appropriate selection of the Formwork system enables the construction cost lower, makes the good quality of the finished concrete, reduces the construction period, assurance of safety, and further more, it enables to achieve the successful performance of the projects. Therefore, this research, after comparing the strength and the weakness between the construction methods, focus the point to provide a builder the basic data to choose the right Formwork method.

Seismic fragility analysis of RC frame-core wall buildings under the combined vertical and horizontal ground motions

  • Taslimi, Arsam;Tehranizadeh, Mohsen;Shamlu, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.175-185
    • /
    • 2021
  • This study strives to highlight the importance of considering the vertical ground motions (VGM) in the seismic evaluation of RC buildings. To this aim, IDA (Incremental Dynamic Analysis) is conducted on three code-based designed high-rise RC frame-core wall buildings using a suite of earthquake records comprising of significant VGMs. To unravel the significance of the VGM inclusion on the performance of the buildings, IDAs are conducted in two states (with and without the vertical component), and subsequently based on each analysis, fragility curves are developed. Non-simulated collapse criteria are used to determine the collapse state drift ratio and the area under the velocity spectrum (SIm) is taken into account as the intensity measure. The outcome of this study delineates that the inclusion of VGM leads to the increase in the collapse vulnerability of the structures as well as to the change in the pattern of inter-story drifts and failure mode of the buildings. The results suggested that it would be more conservative if the VGM is included in the seismic assessment and the fragility analysis of RC buildings.