• Title/Summary/Keyword: core values

Search Result 1,049, Processing Time 0.054 seconds

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Sulfate reduction and sulfur isotopic fractionation in marine sediments (해양퇴적물내에서의 황산염 환원과 황의 안정동위원소 분화)

  • 한명우
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 1993
  • Concentrations of sulfate and 6-values of sulfate, $({\delta}^{34}SO_4_){pw}$, dissolved In pore waters were measured from the sediment cores of the two different marine environments : deep northeast Pacific (57-1) and coastal Kyunggi Bay of Yellow Sea (57-2) . Sulfate concentration in pore waters decreases with depth at both cores, reflecting sulfate reduction in the sediment columns. However, much higher gradient of pore water sulfate at 57-2 than 57-1 indicates more rapid sulfate reduction at 57-2, because of high sedimentation rate at the coastal area compared to the deep-sea. The measured 6-values, $({\delta}^{34}SO_4_){pw}$, follow extremely well the predicted trend of the Rayleigh fractionation equation. The range of 26.756 to 61.35% at the coastal core 57-2 is not so great as that of 32.4$\textperthousand$ to 97.8$\textperthousand$ at the deep-sea core 57-1. Despite greater graclient of pore water sulfate at 57-2, the 6-values become lower than those of the deep- sea core 57-1. This inverse relation between the 6-values and the gradients of pore water sulfate could be explained by the combination of the two subsequent factors : the kinetic effect by which the residual pore water sulfate becomes progressively enriched with respect to the heavy isotope of $^{34}S$ as sulfate reduction proceeds, and the intrinsic formulation effect of the Rayleigh fractionation equation in which the greater becomes the fractionation factor, the more diminished values of $({\delta}^{34}SO_4_){pw}$ are predicted.

  • PDF

Spin-Orbit Density Functional Theory Calculations for TlAt with Relativistic Effective Core Potentials

  • Choi, Yoon-Jeong;Bae, Cheol-Beom;Lee, Yoon-Sup;Lee, Sang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.728-730
    • /
    • 2003
  • Bond lengths, harmonic vibrational frequencies and dissociation energies of TlAt are calculated at ab initio molecular orbital and density functional theory using effective spin-orbit operator and relativistic effective core potentials. Spin-orbit effects estimated from density functional theory are in good agreement with those from ab initio calculations, implying that density functional theory with effective core potentials can be an efficient and reliable methods for spin-orbit interactions. The estimated $R_e$, $ω_e$ and $D_e$ values are 2.937 ${\AA}$, 120 $cm^{-1}$, 1.96 eV for TlAt. Spin-orbit effects generally cause the bond contraction in Group 13 elements and the bond elongation in the Group 17 elements, and spin-orbit effects on Re of TlAt are almost cancelled out. The spinorbit effects on $D_e$ of TlAt are roughly the sum of spin-orbit effects on $D_e$ of the corresponding element hydrides. Electron correlations and spin-orbit effects are almost additive in the TlAt molecule.

Temperature Properties about SMD Inductor Core of Union Type (일체형 SMD Inductor 코어에 대한 온도 특성)

  • Kim, Ki-Joon
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.32-37
    • /
    • 2010
  • In this study, to develop union type SMD inductor core needs to have the desire of super miniaturization and high reliability, it analyzed temperature properties due to electric power value. As the temperature of electronic parts rise, it bring to technical obstacles that parts can not normal operation, it reduce the span of life to raise the fault ratio. Also, it impact to the parts by heat change power and expansive power, it can not behave exactly, and it have an effect on reliability. It measured the difference value between conditional temperature and parts temperature to union type SMD inductor core. As the results of simulation using D.C. current and resistor($R_dc$), it obtained the excellent regular current values at rising temperature of 40[$^{\circ}C$].

Characteristics of Rotor Blade Tip Vortices with Spanwise Slots (스팬방향 슬롯을 가지는 회전익 끝와류의 특성)

  • Chung, Woon-Jin;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1343-1350
    • /
    • 2000
  • The evolutionary structure of tip vortices has been investigated with a two-dimensional LDV system for a plain and a slotted blade, respectively. To analyze the effect of slots which bypasses a part of main stream into the tip face, velocity profiles, vortex sizes, their displacements and turbulence intensities during one revolution of the rotor were measured by the phase averaging process. For the comparison of circumferential velocity components of the plain blade and the slotted blade, the peak values of the slotted blade were lower than those of the plain blade, and axial velocity components of the slotted blade were considerably larger than those of the plain blade. The slotted rotor blade enlarged the core size and made the vortex delayed compared with those of the plain blade at the same wake ages. Turbulence profiles had peaks inside the core radii and decayed gradually in the radial direction of vortex coordinate. Also, using a quasi 3-D LDV measurement technique the budget of turbulence kinetic energy was analyzed in radial direction of the vortex core.

Experimental study on a new type of assembly bolted end-plate connection

  • Li, Shufeng;Li, Qingning;Jiang, Haotian;Zhang, Hao;Yan, Lei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.463-471
    • /
    • 2018
  • The bolted end-plate beam-column connections have been widely used in steel structure and composite structure because of its excellent seismic performance. In this paper, the end-plate bolted connection is applied in the concrete structure, A new-type of fabricated beam-column connections with end-plates is presented, and steel plate hoop is used to replace stirrups in the node core area. To study the seismic behavior of the joint, seven specimens are tested by pseudo-static test. The experimental results show that the new type of assembly node has good ductility and energy dissipation capacity. Besides, under the restraint effect of the high-strength stirrup, the width of the web crack is effectively controlled. In addition, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Development of Automatic Reactor Internal Vibration Monitoring System Using Fuzzy Peak Detection and Vibration Mode Decision Method

  • Kang, Hyun-Gook;Seong, Poong-Hyun;Park, Heui-Youn;Lee, Cheol-Kwon;Koo, In-Soo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.8-16
    • /
    • 1998
  • In this work a method to detect the vibrational peak and to decide the vibrational mode of detected peak for core internal vibration monitoring system which is particularly concerned on the core support barrel (CSB) and fuel assemblies is developed. Flow induced vibration and aging process in the reactor internals cause unsoundness of the internal structure. In order to monitor the vibrational status of core internal, signals from the ex-core neutron detectors are transformed into frequency domain. By analyzing transformed frequency domain signal, an analyst can acquire the information on the vibrational characteristics of the structures, i.e., vibration frequencies of each component, vibrational level, modes of vibration, and the causes of the abnormal vibration, if any. This study is focused on the development of the automated monitoring system. Several methods are surveyed to define the peaks in power spectrum and fuzzy theory is used to automatic detection of the vibrational peaks. Fuzzy algorithm is adopted to define the modes of vibration using the peak values from fuzzy peak recognition, phase spectrum, and coherence spectrum.

  • PDF

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Analysis of Joining Strength in Electromagnetic Joining of Metals to High Toughness Polymers (금속과 고분자 재료의 접합강도 해석)

  • Son, Hui-Sik;Kim, Nam-Hwan;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.110-116
    • /
    • 1992
  • Electromgnetic joining of aluminum alloy tubes to high toughness polyurethane rubber cores is studied in order to estimate the joining strength and to analyze the effect of the process variables. The equation which can estimate the joining strength is proposed under considering the elastic recovery of the polyurethane core and the radial shrinkage of the core by pulling it axially. The obtained results are as follows : 1) The joining strength is mainly dependent on the magnitude of residual elastic strain of the polyurethane core. 2) The radial shrinkage (residual strain reduction) of the core during the axial pulling causes the joining strength to decrease severely. The equation for the reduced axial strength is proposed and it is found that the estimated values agree well with experimental results. 3) The magnitude of radial shrinkage could be reduced for the smaller value of ratio l/r. 4) The joining strength in metal/polymer joining increases as the friction coefficient increases. But its effect of friction coefficient is insignificant in comparison with the case of metal/metal joining.

  • PDF

A Study on Characteristics of Hybrid Damping Device Combining Rubber Core Pad and Hysteretic Steel Slit (고무코어패드와 강재이력감쇠장치를 결합한 복합감쇠장치의 이력특성에 관한 연구)

  • Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • This study proposes an RCS composite damping device that can achieve seismic reinforcement of existing buildings by dissipating energy by inelastic deformation. A series of experiments assessing the performances of the rubber core pad, hysteretic steel slit damping device, and hybrid RCS damping device were conducted. The results showed that the ratios of the deviations to the mean values satisfied the domestic damping-device conformity condition for the load at maximum device displacement in each direction, at the maximum force and minimum force at zero displacement, as well as the hysteresis curve area. In addition, three analysis models based on load-displacement characteristics were proposed for application to seismic reinforcement design. In addition, the validity of the three proposed models was confirmed, as they simulated the experimental results well. Meanwhile, as the shear deformation of the rubber-core pad increased, the hysteretic behavior of super-elasticity greatly increased the horizontal force of the damping device. Therefore, limiting the allowable displacement during design is deemed to be necessary.