• Title/Summary/Keyword: core rod

Search Result 217, Processing Time 0.024 seconds

Assessment of SCDAP Using the Full-Length High-Temperature FLHT-2 Test (FLHT-2 실험결과를 이용한 SCDAP코드 평가)

  • Park, Choon-Kyung;Park, Jong-Hwa;Yoo, Kun-Jung;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.54-64
    • /
    • 1988
  • This paper assesses the models in the SCDAP code using the results of the FLHT-2 test. Calculations show that the SCDAP correctly predicts Ire temperatures, oxidation front movement, overall hydrogen generation and peak generation rate, internal fuel rod pressure, and cladding rupture due to ballooning. A comparison of the calculated results with measured data shows that two phase level is underpredicted, and that radiation heat transfer and auto-catalytic reaction temperature of zircaloy are overpredicted. These models are recommended to be modified. The analysis also shows that the simulation of the gap in a fuel rod improves the code prediction on core damage progression.

  • PDF

The JFNK method for the PWR's transient simulation considering neutronics, thermal hydraulics and mechanics

  • He, Qingming;Zhang, Yijun;Liu, Zhouyu;Cao, Liangzhi;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.258-270
    • /
    • 2020
  • A new task of using the Jacobian-Free-Newton-Krylov (JFNK) method for the PWR core transient simulations involving neutronics, thermal hydraulics and mechanics is conducted. For the transient scenario of PWR, normally the Picard iteration of the coupled coarse-mesh nodal equations and parallel channel TH equations is performed to get the transient solution. In order to solve the coupled equations faster and more stable, the Newton Krylov (NK) method based on the explicit matrix was studied. However, the NK method is hard to be extended to the cases with more physics phenomenon coupled, thus the JFNK based iteration scheme is developed for the nodal method and parallel-channel TH method. The local gap conductance is sensitive to the gap width and will influence the temperature distribution in the fuel rod significantly. To further consider the local gap conductance during the transient scenario, a 1D mechanics model is coupled into the JFNK scheme to account for the fuel thermal expansion effect. To improve the efficiency, the physics-based precondition and scaling technique are developed for the JFNK iteration. Numerical tests show good convergence behavior of the iterations and demonstrate the influence of the fuel thermal expansion effect during the rod ejection problems.

Development of One Dimensional Kinetics Program (일차원 동특성 프로그램 개발)

  • Chan Bock Lee;Chang Hyun Chung;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.71-77
    • /
    • 1986
  • A one dimensional neutron kinetics program, BIK which is applicable to the safety analyses of PWR's is developed to analyze the reactor core in axial dimension. The BIK employs the finite difference technique in space and $\theta$-time integration method in time. Detailed models for the Doppler and moderator feedbacks and control rod motion are included. The benchmark of the nuclear model is carried out through the ANL benchmark problem and the time dependent nuclear power change in the rod ejection accident of KNU1 is calculated by BIK code. The results indicate that the BIK can predict the neutron dynamics with fair accuracy within the limits of one dimensional analysis and it is useful for the safety analyses of PWR's.

  • PDF

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

Development of mechanistic cladding rupture model for severe accident analysis and application in PHEBUS FPT3 experiment

  • Gao, Pengcheng;Zhang, Bin;Li, Jishen;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.138-151
    • /
    • 2022
  • Cladding ballooning and rupture are the important phenomena at the early stage of a severe accident. Most severe accident analysis codes determine the cladding rupture based on simple parameter models. In this paper, a FRTMB module was developed using the thermal-mechanical model to analyze the fuel mechanical behavior. The purpose is to judge the cladding rupture with the severe accident analysis code. The FRTMB module was integrated into the self-developed severe accident analysis code ISAA to simulate the PHEBUS FPT3 experiment. The predicted rupture time and temperature of the cladding were basically consistent with the measured values, which verified the correctness and effectiveness of the FRTMB module. The results showed that the rising of gas pressure in the fuel rod and high temperature led to cladding ballooning. Consequently, the cladding hoop strain exceeded the strain limit, and the cladding burst. The developed FRTMB module can be applied not only to rod-type fuel, but also to plate-type fuel and other types of reactor fuel rods. Moreover, the FRTMB module can improve the channel blockage model of ISAA code and make contributions to analyzing the effect of clad ballooning on transient and subsequent parts of core degradation.

CEFR control rod drop transient simulation using RAST-F code system

  • Tuan Quoc Tran;Xingkai Huo;Emil Fridman;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4491-4503
    • /
    • 2023
  • This study aimed to verify and validate the transient simulation capability of the hybrid code system RAST-F for fast reactor analysis. For this purpose, control rod (CR) drop experiments involving eight separate CRs and six CR groups in the China Experimental Fast Reactor (CEFR) start-up tests were utilized to simulate the CR drop transient. The RAST-F numerical solution, including the neutron population, time-dependent reactivity, and CR worth, was compared against the measurement values obtained from two out-of-core detectors. Moreover, the time-dependent reactivity and CR worth from RAST-F were verified against the results obtained by the Monte Carlo code Serpent using continuous energy nuclear data. A code-to-code comparison between Serpent and RAST-F showed good agreement in terms of time-dependent reactivity and CR worth. The discrepancy was less than 160 pcm for reactivity and less than 110 pcm for CR worth. RAST-F solution was almost identical to the measurement data in terms of neutron population and reactivity. All the calculated CR worth results agreed with experimental results within two standard deviations of experimental uncertainty for all CRs and CR groups. This work demonstrates that the RAST-F code system can be a potential tool for analyzing time-dependent phenomena in fast reactors.

Mechanical and Thermal Analysis of Oxide Fuel Rods

  • Ilsoon Hwang;Lee, Byungho;Lee, Changkun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.223-236
    • /
    • 1977
  • An integral computer code has been developed for a mechanical and thermal design and performance analysis of an oxide fuel rod in a pressurized water reactor. The code designated as FROD 1.0 takes into account the phenomena of radial power depression within the pellet, cracking, densification and swelling of the pellet, fission gas release, clad creep, pellet-clad contact, heat transfer to coolant and buildup of corrosion layers on the clad surface. The FROD 1.0 code yields two-dimensional temperature distributions, dimensional changes, stresses, and internal pressure of a fuel rod as a function of irradiation time within a reasonable computation time. The code may also be used for the analyses of oxide fuel rods in other thermal reactors. As an application of FROD 1.0 the behavior of fuel rod loaded in the first core of Go-ri Nuclear Power Plant Unit 1 is predicted for the two power histories corresponding to steady state operation and Codition II of the ANS Classification. The results are compared with the design criteria described in the Final Safety Analysis Report and a discrepancy between these two values is discussed herein.

  • PDF

Chemotaxonomic and Phylogenetic Study on the Oligotrophic Bacteria Isolated from Forest Soil

  • Whang, Kyung-Sook
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.150-156
    • /
    • 2000
  • Oligotrophic bacteria isolated from forest soil showed a specific community consisting of various taxonomic groups compared with those in other soil or aquatic habitats. Based on the cell shape, the isolates were divided into four groups: regular rod, curved/spiral rod, irregular rod, and prosthecate bacteria. The cellular fatty acids 60 oligotrophic isolates were analyzed. The 30 fatty acids which were identified or characterized are classified. At the dendrogram based on cellular fatty acid composition, four clusters(I-IV) were separated at a euclidian distance of about 50. Cluster 3 and 4-a strains were containing Q-8, these strains are accommodated in the Proteobacteria gamma and beta subdivision. The chemotaxonomic profiles of the cluster 4-a strains showed good agreement with those of the genus Burkholderia. Cluster 3 was characterized by the presence of branched-chain fatty acids, iso-C15:0, iso-C17:1, and iso-C17:0 as the major components. These chemotaxonomy suggested the close relationship of the isolates with Xathomonas/Sterotrophomonas group. Based on the 16S rDNA sequence analysis, the two representative strains(MH256 and MA828) of cluster 3 showed the close relation to genera, Xathomonas/Sterotrophomonas, but were not included in these genera. These strains were even further away from core Xanthomonas, and clearly were seen to branch outside the cluster formed by the Sterotrophomonas maltophilia. MH256 and MA828 16S rDNA sequence was different enough to put new genus on a separate branch. The isolates with Q-10 were also studied. They are corresponded to the two large groups in Proteobacteria alpha subdivision. One was incorporated in the genus Bradyrhizobium cluster, which also includes Agromonas, a genus for oligotrophic bacteria. The strains of the other group showed high similarity to the genus Agrobacterium.

  • PDF

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

Imaging on a Vapor Deposited Film by Photopolymerization of a Rod-Like Molecule Consisting of Two Diacetylenic Groups

  • Chang, Ji-Young;Kyung Seo;Cho, Hyun-Ju;Lee, Cheol-Ju;Lee, Changjin;Yongku Kang;Kim, Jaehyung
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.204-208
    • /
    • 2002
  • A linear rod-like molecule, bis[4-(1,3-octadynyl)phenyl] terephthalate (2), consisting of two diacetylenic groups, was prepared. The unsymmetric diacetylene was prepared by the Cadiot-Chodkiewicz coupling reaction of 1-bromohexyne with 4-ethynylphenol and linked to a benzene core by an esterification reaction with terephthaloyl chloride in tetrahydrofuran. The thin film (200 nm thickness) of compound 2 was fabricated by the physical vapor deposition on a glass plate with a thermal evaporator. In the X-ray diffraction (XRD) study, the vapor deposited film on the glass plate showed peaks with d spacings of 19.4, 5.7, and 4.5 $\AA$. This XRD pattern was quite different from that observed for compound 2 isolated by recrystallization from methylene chloride/hexane. The vapor deposited film was polymerized by UV irradiation. Photopolymerization was carried out through a photomask, resulting in a patterned image, where the irradiated part became isotropic.