• Title/Summary/Keyword: core manufacturing

Search Result 737, Processing Time 0.029 seconds

Characterization of Manufacturing Process of Metal Fibers of Stainless Steel and Titanium (스테인레스 스틸 극세사와 Ti 극세사 제조 특성 평가)

  • Kim T. H.;Ko J. H.;Lee D. B.
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • Stainless steel fibers with a diameter of $17\;{\mu}m$ and 630 nm were produced from stainless steel wires by the drawing/annealing/exfolitation process. The suitable sheath material to draw the core stainless steel wires to fibers was the Cu coating. The low melting metal of Zn was not a suitable sheath coating. Also, an attempt was made to produce $20\;{\mu}m{\Phi}Ti$ fibers from the core titanium wires. The main obstacles in producing Ti fibers were their resistance to deformation owing to the Ti's hop structure, and high reactivity of Ti with the exfolitation solution.

Closing the "CIM GAP" in the Process Industries

  • Canfield, Frank-B.;Nair, Pratap-K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1557-1563
    • /
    • 1991
  • Vendors and consultants struggle to draw attention to their proven experience in discrete CIM in order to convince process manufacturers to adopt CIM technology. The analogy works very well at the periphery where an invoice is an invoice, but disintegrates at the core where modeling of the manufacturing "process" is required. Until recently, it has not been possible to completely and rigorously model entire process plants in real-time, and this missing core element has been called the "CIM GAP" With the recent introduction of the concurrent resolution $^{sm}$ kernel, the CIM GAP now is being closed in the process industries.ntroduction of the concurrent resolution $^{sm}$ kernel, the CIM GAP now is being closed in the process industries.

  • PDF

Semiconductor Policies in Major Countries and Implications of Artificial-Intelligence Semiconductor Policies (주요국 반도체 정책과 AI반도체 정책에의 시사점)

  • K.S. Shin;S.J. Koh
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.2
    • /
    • pp.66-76
    • /
    • 2024
  • Artificial-intelligence (AI) semiconductors are crucial for securing national core competitiveness, including dominating the AI and data ecosystem and succeeding in the Digital New Deal. When examining the macroenvironment, the global division of labor in the semiconductor industry has weakened owing to the technological competition between the United States and China. Major countries are aiming to build the entire semiconductor ecosystem around their territories. As a result, these countries are formulating policy goals tailored to their realities and actively pursuing key policies such as research and development, securing manufacturing bases, workforce development, and financial support. These policies also focus on intercountry cooperation and bold government policy support, which is deemed essential. To secure core competitiveness in AI semiconductors, South Korea needs to examine the policy directions of major countries and actively formulate and implement policies for this semiconductor industry.

A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide (초경합금의 초정밀 연삭특성에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Kim J.T.;Lee B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1737-1740
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide-base $LCU_{CL}$ Core (초정밀 가공기를 이용한 $LSU_{CL}$ 코어 가공에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Lee B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1910-1913
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this paper, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base cores of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

An Analysis on the Audible Sound Due to Load and Cooling Fan for 154kV Power Transformers (154kV 전력용 변압기의 부하소음 및 냉각팬 소음 분석)

  • Koo, Kyo-Sun;Woo, Jung-Wook;Kwak, Joo-Sik;Kim, Gyeong-Tak;Kweon, Dong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.298-304
    • /
    • 2010
  • Recently, the audible sound level of power transformer has been reduced due to development of new material and enhancement of manufacturing technology. There is lack of research on the audible sound of winding and cooling fan because the research on reduction of audible sound is concentrated on the core sound. Therefore this paper describes 3 kinds(core, winding and cooling fan) of transformer sound source. Also this paper analyzes the effect of load sound and cooling fan sound on the total transformer sounds. As the results, total sound level of 79dBA class transformer rises 0.2~0.3dB due to effect of load sound and rises 2.1~3.5dB due to effect of cooling fan sound. Also, total sound level of 55dBA class transformer rises 2.3~2.9dB due to effect of load sound and rises 1.9~3.5dB due to effect of cooling fan sound.

Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory

  • Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.117-127
    • /
    • 2022
  • This study investigates the wave propagation in porous functionally graded (FG) sandwich plates subjected to hygrothermal environments. A new simple three-unknown first-ordershear deformation theory (FSDT) incorporating an integral term is utilized in this paper. Only three unknowns are used to formulate the governing differential equation by applying the Hamilton principle. The FG layer of the sandwich plate is modeled using the power-law function with evenly distributed porosities to represent the defects of the manufacturing process. The plate is subjected to nonlinear hygrothermal changes across the thickness. The effects of the power-law exponent, core to thickness ratios, porosity volume, and the relations between volume fraction and wave properties of porous FG plate under the hygrothermal environment are investigated. The results showed that the waves' phase velocities increase linearly with the waves number in the FGM plate. The porosity of the FG materials plate has a noticeable impact on the phase velocity when considering the high ratios of the core layer. It has a negligible effect on small core layers. Finally, it is observed that changing temperatures and moistures do not influence the relationship between the power law and the phase velocity.

Analysis of the microstructure of melting-pool in aluminum specimens fabricated by SLM technique (SLM 기법으로 제작한 알루미늄 시편 내부 멜팅풀 미세조직 분석)

  • Kim, Moo-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.115-119
    • /
    • 2020
  • Selective Laser Melting (SLM) technology is state-of-the-art additive manufacturing process technology that produces a three-dimensional structure by irradiating a laser on a fine metal powder to perform the fusion of a specific area and repeat this process. Owing to the characteristics of the additive manufacturing process, the melting phenomenon of the metal material by the laser has directionality depending on the process conditions, such as the irradiation direction of the laser and the build-up direction. For this reason, the composition of the metal material in the structure exhibits non-uniform characteristics. In this study, aluminum (AlSi10Mg) specimens were manufactured by applying SLM technology, and the material composition characteristics of the specimen were analyzed. The specimens were manufactured as cylinders by the build-up orientation of 0°, 45°, and 90°. The surface morphology of the specimen plane was analyzed optically. TEM analysis was performed on the core and the interface of the melting-pool inside the specimen generated by laser irradiation. The analysis results confirmed that there was a difference between the nano cell structure of the core and the interface of the melting-pool, and that the composition ratio of Si appeared higher at the interface than at the core of the cell.

Design Optimization of Duplex Burnable Poison Rods and Feasibility Evaluation for Core Design (이중구조 가연성독봉 설계안의 최적화 및 노심 핵설계 타당성 평가)

  • Yoon Seok-Kyun;Lee Dae-Jin;Kim Myung-Hyun
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.242-258
    • /
    • 2004
  • The duplex burnable poison absorbers concept was suggested by Korea Atomic Energy Research Institute. This BP rod is composed of inner region of natural U-Gd$_2$O$_3$ and outer shell of enriched UO$_2$-Er$_2$O$_3$. It is expected that this burnable absorber has same reactivity control capability with gadolinia burnable absorber used in extened fuel cycle. In order to evaluate the nuclear feasibility of duplex BPs, the nuclear design characteristics were compared with that of four types of burnable absorbers; gadolinia, erbia, IFBA, dysprosia duplex BP on 24 months fuel cycle for Korean Standard Nuclear Power plants. According to the evaluation results of nuclear characteristics, the duplex BPs were better than other BPs on k-infinitives, reactivity holddown worth (RHW), pin power peaking and moderator temperature coefficient (MTC). The possibility of nuclear core design was also confirmed based on the optimized fuel assemblies which were searched for a sensitivity analysis. Characteristics of core design with duplex BPs was compared with that of reference core with gadolinia BPs for cycle length, power peaking and MTC. The duplex BP core had a little longer cycle length by 4 to 7 days because of increased amount of fissile in enriched uranium at the outer shell of duplex BP In case of power peaking F$\_$Q/ of duplex BP core was reduced from 1.5773 to 1.5335. MTC was also less -0.48 pcm/C than that of reference core. Finally, evaluation of fuel cycle economy was performed for the manufacturing feasibility test and fuel cost evaluation with duplex BPs. Fuel cycle economy of duplex BP core almost was equivalent with that of gadolinia BP core.

Single Phase Switched Reluctance Motor for Vacuum Cleaner (진공청소기용 단상 스위치드 리럭턴스 모터)

  • Lim, Jun-Young;Jung, Yun-Chul;Kim, Sang-Young;Choi, Yong-Won;Kim, Jungn-Chul
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.247-251
    • /
    • 2001
  • Universal motors are mainly used for vacuum cleaner application. There are a lot of researches on SRM that applys home appliance throughout the world. The manufacturing cost of SRM drive makes it hard to expand its application to home appliance. This paper presents Single Phase SRM for the vacuum cleaner that has advantge in cost and performance over conventional universal motor. This paper proposes new power device driving scheme by using SRM switching characteristic. The driving scheme is very simple and inexpensive. Dwell Time Control method is used for the minimum switching loss of power device. The switching frequency of power device is less than 4.5kHz at 45,000rpm. By use of this scheme, power device based on very small switching losses can be used on SRM drive. Also, the biggest problem in single phase SRM is starting, this paper shows a new starting algorithm with two hall sensors, accelerating and running sensors, respectively. Finally, the proposed Single Phase SRM achieves higher efficiency and long life time compared to universal motor. Its life time is more than 1500 hours. Its life time is extended 4 times than that of conventional motor and its suction power is increased $20\%$ at the same volume of conventional universal motor.

  • PDF