• Title/Summary/Keyword: core layer of board

Search Result 34, Processing Time 0.024 seconds

Study on the Mechanical Properties of Tropical Hybrid Cross Laminated Timber Using Bamboo Laminated Board as Core Layer

  • GALIH, Nurdiansyah Muhammad;YANG, Seung Min;YU, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • This study was performed to analyze the mechanical properties of tropical hybrid cross-laminated timber (CLT) with bamboo laminated board as the core layer in order to evaluate the possibility of its use as a CLT material. Bamboo board was used as the core layer and the tropical species Acacia mangium willd., from Indonesia, was used as the lamination in the outer layer. The modulus of elasticity (MOE), modulus of rupture (MOR), and shear strength of the hybrid CLT were measured according to APA PRG 320-2018 Standard for Performance-Rated Cross-Laminated Timber. The results show that the bending MOE of the hybrid CLT was found to be 2.76 times higher than SPF (Spruce Pine Fir) CLT. The reason why the high MOE value was shown in bamboo board and hybrid CLT applied bamboo board is because of high elasticity of bamboo fiber. However, the shear strength of the hybrid CLT was 0.8 times lower than shear strength of SPF CLT.

Implementation of LED BLU Using Metal core PCB with Anodizing Oxide Layer (에노다이징 절연층과 반시컵 구조를 보유한 COB타입 LED BLU 광원구현)

  • Hong, Dae-Un;Jo, Jae-Hyeon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.157-159
    • /
    • 2009
  • LED BLU(Back Light Unit), based on MCPCB(Metal Core Printed Circuit Board) with anodizing oxide dielectric layer and improved thermal dissipation property, are presented. Reflecting cups were also formed on the surface of the MCPCB such that optical coupling between neighboring chips were minimized for improving the photon extraction efficiency. LED chips were directly attached on the MCPCB by using the COB (Chip On Board) scheme.

  • PDF

Implementation of LED BLU Using Metal core PCB with Anodizing Oxide Layer and Reflection Cup Structure (에노다이징 절연층과 반사컵 구조를 보유한 COB타입 LED BLU 광원구현)

  • Cho, Jae-Hyun;Lee, Min-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.8-13
    • /
    • 2009
  • LED BLU(Back Light Unit), based on MCPCB(Metal Core Printed Circuit Board) with anodizing oxide dielectric layer and improved thermal dissipation property, are presented. Reflecting cups were also formed on the surface of the MCPCB such that optical coupling between neighboring chips were minimized for improving the photon extraction efficiency. LED chips were directly attached on the MCPCB by using the COB (Chip On Board) scheme.

Manufacturing Characteristics of Boards Recycling Waste Wood Particle (폐목재파티클을 이용한 재생보드의 제조특성)

  • Kim, Wae-Jung;Suh, Jin-Suk;Han, Tae-Hyung;Park, Jong-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.120-127
    • /
    • 2006
  • The hammer-milled characteristics of waste wood materials such as lumber, plywood, particleboard(PB), MDF and railroad tic were investigated in this study. The physical and mechanical properties of recycled boards according to types of recycled particle and the mixing ratios were also studied. The hammer-milled, waste wood materials had the dimensional distributions suitable for the core layer panicle. Bending strengths of recycled boards (one layer) were shown in order of plywood, PB(laboratory-fabricated with particles used in the PB factory), lumber, tego film-overlaid plywood, MDF, waste railroad tie, PB(factory-made) and LPL-overlaid PB. Cured resin and creosote containing waste wood contributed to dimensional stability of reconstituted boards. Considering the mixing effects between lumber and plywood with recycled PB particle, lumber particle was contributive to bending strength, MOE and internal bond(IB) strength, whereas plywood particle was contributive to dimensional stability. The bending and IB strength of 3 layer boards composing only recycled waste wood particles in core layer of board were in order of lumber, plywood, PB and MDF. On the other hand, the thickness swelling was in order of PB, lumber, plywood and MDF. Bending strength of the 3 layer boards mixed with recycled PB-particle in the core layer had a decreasing tendency, as the mixing ratios of recycled PB-particles increased. The dimensional stability of 3 layer recycled board was improved as the mixing ratio of recycled PB-particle increased same as in one layer. Formaldehyde emission of boards fabricated with recycled PB-particles in the core layer of the PB was in the range of E2 grade (below 5.0mg/l).

  • PDF

Physical and Mechanical Properties, Thermal Conductivity and Fire-Proof Performance of Wood-Cement Board (목질.시멘트보드의 물리.기계적 성질, 열전도성 및 내화성)

  • 서진석;박종영
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.31-38
    • /
    • 2003
  • This study was carried out to investigate characteristics of wood-based panels and wood-cement board for the possible uses as flooring and wall materials. The optimum cement/wood ratio(C/W ratio) of wood~cement board manufactured by clamp-pressing was from 2.7 to 3.2. The dimesional stability was superior in the C/W ratio of 3.2. Particularly, the dimensional stability of cement board using fine particle for particleboard face layer was favorable through three levels of C/W ratio. According to types of wooden material, bending strength of cement board using coarse particle for particleboard core layer or old newspaper(ONP) fiber was relatively higher than others. Thermal conductivities of wood-cement boards were no lower than that of gypsum board, and higher than those of plywood and boards. In case of wood-cement board of the C/W ratio of 2.7, the fire-proof performances of cement composite boards were greater than that of gypsum board, and weight loss reached to about a half of gypsum board. Then, wood-cement boards showed superior fire-proof performance compared to wood-based panels.

  • PDF

Slim Design for Membrane Type LNGC using 3X-Board (3X-Board를 적용한 멤브레인형 LNGC의 Slim화 설계)

  • Ryu, Sung-Heon;Cho, Jin-Rae;Ha, Mun-Keun;Lee, Joong-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1280-1285
    • /
    • 2003
  • In the developement of LNG cargo, the current concern focuses on the slim design of insulation layer to increase the LNG carrying capacity. Not only thermal stability with BOR(Boil-Off Rate) but structual stability against the LNG weight and the sloshing phenomenon must be also considered. In this paper, we applied the stitched sandwitch composite called the 3X-Board which is stitched through the core thickness direction using glass fiber to the LNG cargo. We evaluated the thermal and structural characteristics of 3X-Board by changing the core thickness and the material, in order to explore a validity for the slim design through the finite element analysis.

  • PDF

A MICRO FLUXGATE SENSOR IN PRINTED CIRCUIT BOARD (PCB) (인쇄회로 기판에 내장된 마이크로 플럭스게이트 센서)

  • 최원열;황준식;나경원;강명삼;최상언
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.151-155
    • /
    • 2002
  • This paper presents a micro fluxgate magnetic sensor in printed circuit board (PCB). The fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a micro patterned amorphous magnetic ribbon with extremely high DC permeability of ∼100,000 and the core has a rectangular-ring shape. The amorphous magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. Four outer layers as an excitation and pick-up coils have a planar solenoid structure. The chip size of the fabricated sensing element is 7.3${\times}$5.7m㎡. Excellent linear response over the range of -100${\mu}$T to +100${\mu}$T is obtained with 540V/T sensitivity at excitation square wave of 3V$\_$P-P/ and 360kHz. The very low power consumption of ∼8mW was measured. This magnetic sensing element which measures the lower fields than 50${\mu}$T, is very useful for various applications such as: portable navigation systems, military research, medical research, and space research.

  • PDF

Embedded Micro Fluxgate Sensor in Printed Circuit Board (PCB) (PCB 기판에 내장된 마이크로 플럭스게이트 센서)

  • 최원열;황준식;강명삼;최상언
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.702-707
    • /
    • 2002
  • This paper presents a micro fluxgate sensor in printed circuit board (PCB). The fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a micro patterned amorphous magnetic ribbon and the core has a rectangular-ring shape. The amorphous magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. Four outer layers as an excitation and pick-up coils have a planar solenoid structure. The chip size of the fabricated sensing element is 7.3$\times$5.7$\textrm{mm}^2$. Excellent linear response over the range of -100$\mu$T to +100$\mu$T is obtained with 540V/T sensitivity at excitation square wave of 3 $V_{p-p}$ and 360kHz. The very low power consumption of ~8mW was measured. This magnetic sensing element, which measures the lower fields than 50$\mu$T, is very useful for various applications such as: portable navigation systems, military research, medical research, and space research.h.

Effect of Rice Straw Steaming Time and Mixing Ratio between Acacia mangium Willd Wood and Steamed Rice Straw on the Properties of the Mixed Particleboard

  • Tran, Van Chu;Le, Xuan Phuong
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • This study examined the effects of rice straw steaming time and mixing ratio between rice straw and wood particle on the properties of mixed particle board from Acacia mangium Willd wood and rice straw. Rice straw and Acacia mangium Willd wood were collected in Hanoi, Vietnam. The particle board was three-layer particle board with the structural ratio of 1:3:1. The thickness, density and board size of the particle board were 18 mm, $0.7g/cm^3$, and $800{\times}800{\times}18$ (mm, including trimming), respectively. A resin mixture between commercial Urea-formaldehyde (U-F) adhesive and methylene diphenyl isocyanate (MDI) adhesive was used with a dosage of 12% for the core layer and 14% for the surface layer. In this experimental design, the steaming time for rice straw was 15, 30, 45, 60, and 75 minutes at $100^{\circ}C$. The rice straw-wood mixing ratio was 10, 20, 30, 40, and 50%. The results showed that both mixing ratio and steaming time affect the properties of the particleboard, but the mixing ratio has a stronger impact. A higher mixing ratio and a longer steaming time resulted in a better quality of particleboard. The optimal steaming time for rice straw was 46.12 minutes with the straw-wood mixing ratio of 29.85% with the following characteristics of the particle board: the modulus of rupture (MOR) of 14.64 MPa, internal bond strength (IB) of 0.382 MPa, thickness swelling (TS) of 8.83%, and board density of $0.7-0.7g/cm^3$.

The Study on Physical and Mechanical Properties of Composite Board, Using Byproduct of Plywood for Core Layer (합판 정재단 부산물을 중층 Core로 이용한 복합보드의 물리·기계적 성질에 관한 고찰)

  • Choe, Song-Kyu;Pi, Duck Won;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.490-496
    • /
    • 2013
  • The board using recycled wood waste chip tends to decrease in terms of physical and mechanical properties. The reasons are notably different shape of chips, components of used adhesive and impurity content, which bring the irregular quality and downgrading of board. More over, the board has higher emissivity of formaldehyde than regular board, because recycled chip contains adhesives that were used to make previous products. This low quality of products weakens the price and quality competitiveness, and it led to bringing the issue of problem in Korean board industry. For these reason, in this study, boards using byproducts of plywood were made to evaluate physical and mechanical properties according to manufacturing conditions. As a result, The board was consists of 4~16 mesh chips for core layer and veneer on both face and they were combined using EMDI, and its' bending strength was 57.7 $N/mm^2$ which is 215% higher than that of OSB (26.8 $N/mm^2$). Moreover, the emissivity of formaldehyde was 0.7 ppm, this board seems to substitute OSB for rated sheathing.