• Title/Summary/Keyword: copy number aberration

Search Result 2, Processing Time 0.018 seconds

RAN-aCGH: R GUI Tools for Analysis and Visualization of an Array-CGH Experiment

  • Kim, Sang-Cheol;Kim, Byung-Soo
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.137-139
    • /
    • 2007
  • RAN-aCGH is an R GUI tool for the analysis and visualization of array comparative genomic hybridization (array-CGH) experiments. The tool consists of data-loading, preprocessing for missing data, several methods for statistical identification of DNA copy number aberration, and visualization of the copy number change. RAN-aCGH requires a single input format, provides various visualizations, and allows the addition of a new statistical method, all in a user-friendly graphic user interface (GUI).

Comparison of the copy-neutral loss of heterozygosity identified from whole-exome sequencing data using three different tools

  • Lee, Gang-Taik;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.4.1-4.8
    • /
    • 2022
  • Loss of heterozygosity (LOH) is a genomic aberration. In some cases, LOH can be generated without changing the copy number, which is called copy-neutral LOH (CN-LOH). CN-LOH frequently occurs in various human diseases, including cancer. However, the biological and clinical implications of CN-LOH for human diseases have not been well studied. In this study, we compared the performance of CN-LOH determination using three commonly used tools. For an objective comparison, we analyzed CN-LOH profiles from single-nucleotide polymorphism array data from 10 colon adenocarcinoma patients, which were used as the reference for comparison with the CN-LOHs obtained through whole-exome sequencing (WES) data of the same patients using three different analysis tools (FACETS, Nexus, and Sequenza). The majority of the CN-LOHs identified from the WES data were consistent with the reference data. However, some of the CN-LOHs identified from the WES data were not consistent between the three tools, and the consistency with the reference CN-LOH profile was also different. The Jaccard index of the CN-LOHs using FACETS (0.84 ± 0.29; mean value, 0.73) was significantly higher than that of Nexus (0.55 ± 0.29; mean value, 0.50; p = 0.02) or Sequenza (0 ± 0.41; mean value, 0.34; p = 0.04). FACETS showed the highest area under the curve value. Taken together, of the three CN-LOH analysis tools, FACETS showed the best performance in identifying CN-LOHs from The Cancer Genome Atlas colon adenocarcinoma WES data. Our results will be helpful in exploring the biological or clinical implications of CN-LOH for human diseases.