• Title/Summary/Keyword: copper-alloy net cage

Search Result 3, Processing Time 0.016 seconds

Economic Feasibility of Culture Using the Copper Alloy Net Cage and the Profit Model of Fish Farm on Yellowtail, Seriola quinqueradiata (동합금 가두리망 방어양식의 경제성과 수익구조)

  • Hwang, Jin-Wook
    • The Journal of Fisheries Business Administration
    • /
    • v.52 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • This study is aimed to analyze the economic feasibility of yellowtail culture using the copper alloy net cage in Gyeongsangbuk-do. First of all, in order to evaluate the copper alloy net cage on yellowtail culture, I review the trend on the yellowtail culture industry and research the concept of copper alloy net cage. The copper-alloy net cage is now recognized as an advantages of its system stability, recycling, antibiosis and food safety. The results were summarized as follows: first, there was significant meaning of the profit model of yellowtail culture by the price difference. Second, I analyzed in the economic feasibility of yellowtail culture using the copper alloy net cage, internal rate of return (IRR) was 51.58%, a benefit-cost ratio was shown to be 2.27 and net present value (NPV) was 1,087,337 thousand won, which indicates the economic feasibility of yellowtail culture using the copper alloy net cage is profitable. Finally, in order to improve the economic valuation, it is necessary to focus more on the developing of technology and cost reduction strategy on the copper alloy net cage.

Fish Farm Performance of Copper-alloy Net Cage: Biological Safety of Red Sea Bream Pagrus major Rearing the Copper-alloy Net Cage (동합금가두리망에서 사육한 참돔, Pagrus major의 생물학적 안전성)

  • Shin, Yun Kyung;Kim, Won-Jin;Jun, Je-Cheon;Cha, Bong-Jin;Kim, Myoung-Sug;Park, Jung Jun
    • Korean Journal of Ichthyology
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2017
  • To understand the application in farm for the fish aquaculture, we investigated biological and pathological traits on red sea bream Pagrus major which were reared in each copper-alloy net cage and the synthetic fiber net cage for 9 months. Two groups of cage were made and set in Yokji-eup, Tongyoung, Gyeongsangnam-do in size of 25 m in diameter and 10 m of depth. Survival rate of the red sea bream in the rearing copper-alloy net cage and synthetic fiber cage showed 99.75% and 99.70% respectively, there was no significant difference. Daily weight growth rate in each net was shown to 2.13 g/day and 1.65 g/day. Health analysis by blood composition analysis showed a favorable result in the copper-alloy net cage rather than in the synthetic fiber net. Bioaccumulation of heavy metal such as Cu and Zn especially in gonad was higher than other organ. Bioaccumulation of Cu and Zn in the muscle was lower compared to the permitted standard for food safety. Pathogenic infection test discovered Microcotyle tai for parasite, V. alginolyticus and other five species for bacteria. But there was a little bit difference of bacteria infection in copper-alloy net cage and copper-alloy net cage is expected to be has antibacterial effect. Thus, copper-alloy net cage can be applied to farm considering its system stability, recycling, antibiosis and food safety.

The survival rate, respiration and heavy metal accumulation of abalone (Haliotis discus hannai) rearing in the different copper alloy composition (동합금 조성에 따른 북방전복 (Haliotis discus hannai)의 생존, 호흡 및 중금속 축적률)

  • Shin, Yun-Kyung;Jun, Je-Cheon;Myeong, Jeong-In;Yang, Sung-Jin
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.353-361
    • /
    • 2014
  • In order to investigate the effects of copper alloy on abalone physiology, we studied survival rate, respiration, excretion rate, and heavy metal accumulation in each organ of adults and spats. The survival rate of spats and adults showed 27-60% and 63-83% respectively, higher survival rate in adults. In particular, 100% of copper panel led to lowest survival rate and there was no sharp distinction according to copper alloy composition. The respiration rate and excretion rate of ammonia nitrogen was $1.81mgO_2/g$ D.W./h and 0.43 mg $NH_4-N/g$ D.W./h respectively at 100% of copper panel. In other words, there was a high significant difference at the level, but no significant difference at other test levels (P < 0.05). The atomic ratio (0: N) hit the lowest at the 100% of copper panel showing 3.79 and no significant differences were seen among other test groups with 6.57-7.18 of a very low range. This means that the species might have undergone nutritional stress. In case of copper accumulation, the 100% copper panel group showed the highest level in hepatopancreas and muscle showing 6.91 mg/kg and 1.60 mg/kg respectively but the rest of groups showed similar levels. Zinc accumulation raised at Cu-Zn alloy panel had high significance showing 18.50 mg/kg and 1.10 mg/kg in hepatopancreas and muscle respectively (P < 0.05). To sum up, a cage net made of 100% pure copper is expected to have a negative effect on abalone in light of survival rate, heavy metal accumulation, and atomic ratio (0: N). Moreover, given that the substratum used for the high adhesive species and nutritious stress that is represented through the atomic ratio need to be considered, the copper alloy net is thought not to be suitable for abalone aquaculture.