• 제목/요약/키워드: copper mineralization

검색결과 68건 처리시간 0.026초

거제동광상(巨濟銅鑛床)의 광물공생관계(鑛物共生關係)와 유체포유물(流體包有物) (Mineral Paragenesis and Fluid Inclusions of Geoje Copper Ore Deposits)

  • 김찬종;박희인
    • 자원환경지질
    • /
    • 제17권4호
    • /
    • pp.245-258
    • /
    • 1984
  • Geoje copper ore deposits are fissure filled copper veins which developed in late Cretaceous pyroclastics, andesite and shale. Mineral paragenesis reveals a division of the hydrothermal mineralization into three stages: Stage I, deposition of pyrite, magnetite, specularite, quartz and chlorite; Stage II, deposition of chalcopyrite, sphalerite, galena, tetrahedrite, aikinite, cosalite, electrum, quartz and chlorite; Stage III, deposition of barren calcite. Filling temperatures of fluid inclusions in quartz of stage I range from 171 to $282^{\circ}C$ whereas fluid inclusions in quartz and sphalerite of stage II range from 213 to $262^{\circ}C$ and from 186 to $301^{\circ}C$ respectively. Salinities of fluid inclusions in quartz of stage I range from 5.2 to 11.2 weight percent equivalent to NaCl. Salinities of fluid inclusions in quartz and sphalerite of stage II range from 6.6 to 10.9 and from 7.1 to 14.4 weight percent equivalent NaCl. Salinities of ore fluid during major mineralization stage in this deposits reveal nearly the same ranges as those of many copper deposits in Koseong copper mining district which located about 30km apart from Geoje mine. But filling temperatures of fluid inclusions formed during major copper mineralization stage in this deposits show slightly lower than those of copper deposits in Koseong copper mining district.

  • PDF

함안지역 함 동 광화작용의 지화학적 환경 (Geochemical Environments of Copper-bearing Ore Mineralization in the Haman Mineralized Area)

  • 최상훈
    • 자원환경지질
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 함안광화대는 한반도 남동부 백악기 경상퇴적분지 내에 위치한다. 함안광화대에는 함동 다금속 열수 맥상 광화작용이 진행되어, 함동광물을 포함한 황화광물들과 철산화광물 및 황염광물 등이 열극을 충진하여 발달한 전기석, 석영 및 탄산염광물 맥 내에 산출한다. 본 광화대 내에는 군북, 제일군북 및 함안 광상 등이 분포한다. 광화대의 광화작용은 함철 및 함동 광화작용이 주로 진행된 광화 I 기와 주된 동광화작용이 진행되어 황화광물과 황염광물이 산출하는 광화 II 기 및 금속광물의 산출이 이루어지지 않은 방해석맥으로 이루어진 광화 III 기로 구분된다. 광물공생관계와 광물의 지화학적 조성특성 등이 고려된 열역학적 연구결과 주된 함동광물인 황동석의 침전은 약 $350^{\circ}C$ 에서 시작되어 약 $250^{\circ}C$ 까지 진행되었다. 동은 주로 염화복합체로 이동되었으며, 상기 온도의 냉각과정에 수반된 지화학적 환경요인 ($fs_2$, $fo_2$, pH 등)들의 변화에 의한 함동 염화복합체의 용해도 감소에 의하여 침전되었다.

Sulfide MINERALs texture AT THE HUGO DUMMETT PORPHYRY Cu-Au DEPOSIT, OYU TOLGOI, MONGOLIA

  • Myagmarsuren, Sanjaa;Fujimaki, Hirokazu
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 한국정보컨버전스학회 2008년도 International conference on information convergence
    • /
    • pp.99-102
    • /
    • 2008
  • Mineralogical studies of ore and alteration minerals have been conducted for the Hugo Dummett porphyry copper deposit. The Hugo Dummett porphyry copper gold deposit is located in the South Gobi region, Mongolia and currently being explored. This deposit divided into the Cu-rich Hugo Dummett South and the Cu-Au-rich Hugo Dummett North deposits. The Hugo Dummett deposits contain 1.08% copper(1.16 billion tonnes in total) and 0.23 g/t gold(Oyunchimeg et al., 2006). Copper-gold mineralization at these deposit are centered on a high-grade copper(typically>2.5%) and gold(0.5-2 g/t) zone of intense quartz stockwork veining. The high grade copper and gold zone is mainly within the Late Devonian quartz monzodiorite intrusions and augite basalt, also locally occurs in dacitic rocks. Intense quartz veining forms a lens up to 100 m wide hosted by augite basalt and partly by quartz monzodiorite. Although many explorations have been carried out, only a few scientific works were done in the Oyu Tolgoi mining area. Therefore the nature of copper-gold mineralization and orgin of the deposit is not fully understood. Copper-gold mineralization in the Hugo Dummett deposits occurs in dominantly quartz monzodiorite and minor augite basalt, dacitic rocks and locally biotite granodiorite. Chalcopyrite, pyrite, bornite, molybdenite, tennantite, tetrahedrite, enargite, sphalerite, chalcocite, covellite, eugenite, galena and gold occur as main ore minerals in the Hugo Dummett North and South deposits. These sulfides occur as: (1) a vague vein-like trail 1-3cm long and 2-3 mm wide, (2) minute, discontinuous cracks within quartz(micron scales), and (3) irregular blebs/spots(micron scales)and (4) disseminated within the sericite and plagioclase, commonly concentrated in the quartz. Sulfide minerals commonly display as a replacement, intergrown and minor exsolution texture in the both of the Hugo Dummet deposits.

  • PDF

거제(巨濟) 동아광산(東亞鑛山)의 지질(地質) 및 광상(鑛床) (Geology and Ore Deposits of Geoje Dong-A Mine)

  • 김종대
    • 자원환경지질
    • /
    • 제19권spc호
    • /
    • pp.103-112
    • /
    • 1986
  • The geology of the mine consists of Cretaceous lower andesitic breccia member, tuffaceous black shale, upper tuffaceous sandstone member and andesitic dike. Ore bodies are two parallel veins of breccia originated from hydrothermal activity of later acidic igneous intrusion. First two periods of mineralization, gold and silver, and copper, and later copper enrichment was identified. The first two might have been occurred during boiling of hydrothermal solution that formed breccia and copper enrichment was accomplished by enhancement of $CO_2$ fugacity from the organic material contained in the black shale. With all the geologic and mineralogic data and inferences attained from other investigators it was estimated that the optimum depth of the ore mineralization was between 500m and 300m below the surface of Kyong-Sang series.

  • PDF

동점광산(銅店鑛山) 동광상(銅鑛床)에 대(對)한 I.P물리탐사(物理探査) (Induced Polarization Prospecting at the Dongjeom Copper Mine)

  • 방기열;이승종;한민호;이경용
    • 자원환경지질
    • /
    • 제18권4호
    • /
    • pp.301-308
    • /
    • 1985
  • I.P exploration is conducted mainly at the alluvium covered granodiorite stock of the Red Hill area at the Dongjeom coal mine, employing Canadian Mcphar equipments of variable frequencies-domain method along a total of 8.5 survey line. Mineralization zone is found by LP anomalies along the I.P the profile of frequency mode. Comparing with the past drilling data, the cause of each anomly is furthermore identified as copper bearing mineralized zones. As alteration and mineralization cover all over the Red-Hill altered grandiorite, copper bearing sulfide veinlets and strings filled out the fractured and altered zones.

  • PDF

동점광산(銅店鑛山)의 붉은등 광체(鑛體)의 성인(成因)에 관한 연구(硏究) (A Study on Red Hill Copper Deposits of the Dongjom Mine)

  • 김옥준;김규한
    • 자원환경지질
    • /
    • 제7권4호
    • /
    • pp.157-173
    • /
    • 1974
  • The Red Hill deposit of the Dongjom Copper Mine is the most promising deposit of the mine and under intensive exploration at present although there are eight more deposits of vein type. With total 2160m drilling of 9 holes completed and 400m drilling on two holes underway, the nature of the Red Hill deposit has come more clear. The copper content in the whole ore body is meager so far as the exploration done up to present indicates, but there are evidences that mineralization covers all over the granodiorite cupola at the Red Hill area. The petrological work and assay on the samples taken by the writers indicate that granodiorite rocks can be divided into fresh zone and alteration zone. Alteration zone consists of potassic and argillic zones accompanyied by silicification zone on basis of Lowell and Guilbert model Argillic zone has closely related with a mineralization in the Red Hill deposit. It has been cleared that the alteration acompanyied with the mineralization took place not only &long vertical fissures but also in the irregular lateral zone, the nature of which is unknown. Judging from the results of exploration and petrochemical study on the Red Hill deposit which is imbedded in a southern part of the granodiorite cupola, it can be concluded by the writer's opinion that the Red Hill deposit is possibly a porphyry copper deposit, because the shape of the ore body, mineral zoning and paragenesis and wall rock alteration resemble to those of typical porphyry copper deposits. It is the writers' opinion that more exploration work is required so as to evaluate the deposit.

  • PDF

동화-황학산광산의 동광화작용 (Copper Mineralization of the Donghwa and Hwanghagsan Mine)

  • 이현구;김상중;김문영
    • 자원환경지질
    • /
    • 제31권1호
    • /
    • pp.1-10
    • /
    • 1998
  • Copper mineralization of the Donghwa and Hwanghagsan mines was deposited in hydrothermal quartz veins which filled fissures in Cretacous sedimentary rocks. Ore minerals are pyrite, sphalerite, chalcopyrite, bornite, galena, wittichenite and unidentified Cu-Bi-Pb-Sb-S mineral. On the basis of salinities and homogenization temperatures for fluid inclusions, the Donghwa deposit was deposited from $300^{\circ}C$ to $220^{\circ}C$ with 2.5 to 0.2 wt.% eq. NaCl, and the Hwanghagsan deposits was deposited from $300^{\circ}C$ to $160^{\circ}C$ with 4.0 to 0.0 wt.% eq. NaCl. Evidence of boiling suggests pressure of 170 to 60 bar, these pressures correspond to 1700 m to 600 m. The ${\delta}^{34}S_{H_2S}$ values of the Donghwa deposit (4.8~7.4%) are higher than those of the Hwanghagsan deposit (3.5~4.5%), sulfur isotope compositions indicate that ore fluids partially reacted with meteoric water and wall-rock. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ of the Donghwa deposit (> $420^{\circ}C$, $10^{-3.2}atm$) is higher condition than that of the Hwanghagsan deposit (> $290^{\circ}C$, $10^{-7.0}atm$). K-Ar ages for biotite granite and quartz porphyry in the study area are 64.7 Ma, and 60.9 Ma, reapectively. Mineralization age using sericite in the Donghwa deposits is 59.8 Ma. Therfore, Copper mineralization in the study area was associated with acidic igneous activity such as biotite granite or quartz porphyry.

  • PDF

페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용 (Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru)

  • 양석준;허철호;김유동
    • 자원환경지질
    • /
    • 제48권6호
    • /
    • pp.525-536
    • /
    • 2015
  • 트라피체 프로젝트는 현재 탐사단계 중 후기(Advanced exploration)단계의 프로젝트이며 안다우아일라스-야우리 광상구 연변에 나타나는 다양한 반암 광상 중 일부라고 볼 수 있다. 이 광상은 몬조나이트 반암의 관입과 관계가 있으며, 또한, 올리고세 각력 파이프와 밀접한 관계를 가지고 있는 광상이다. 광화작용은 일차 유화광물인 황철석, 황동석, 반동석 및 휘수연석으로 구성된다. 2차 유화광물인 휘동석, 코벨라이트, 다이게나이트가 산출되며 산화동으로서 공작석, 흑동석, 적동석등이 산출된다. 침출작용(lixiviation)이나 부화과정 결과로서, 광화작용은 비전형적인 누대구조를 보여주기도 한다. 각력과 반암이 나타나는 구역에서는 수직적인 누대구조를 보여주는데, 북쪽 인근에서는 침출대, 2차부화대, 전이대 및 초생광화대가 나타나고 광상의 서쪽에서는 산화대 및 혼합대가 좁게 나타난다. 광상의 추정자원은 920 Mt @ 0.41% Cu이며 한계품위는 0.15%로 산정하고 있다.

경북·의성 동남부 오토산 주변의 동광화작용 (Copper Mineralization Around the Ohto Mountain in the Southeastern Part of Euiseong, Gyeongsangbug-Do, Republic of Korea)

  • 이형구;김상중;윤혜수;송영수;김인수
    • 자원환경지질
    • /
    • 제26권3호
    • /
    • pp.311-325
    • /
    • 1993
  • The Ohto and Tohyun copper mine which are located 4 km southeast of Euiseong, Gyeongsangbukdo, Republic of Korea show various common geologic and mineralogic features. Both copper deposits are of hydrothermal-vein types, and associated with fracture system developed during formation of the Geumseong-san caldera in late Cretaceous age. According to structures and mineral assemblages, the mineralization processes have progressed in four stages: three hypogene mineralization stages and one supergene stage. Three hypogene stages are 1) stage I forming $N5{\sim}20^{\circ}E$ veins in the Ohto mine, 2) stage II building $N5^{\circ}W{\sim}N5^{\circ}E$ veins in the Tohyun mine, and 3) stage ill bringing $N80^{\circ}E$ veins which crosscut veins of the stage II. The vein ores consist mainly of pyrite, arsenopyrite, galena and chalcopyrite, minor or trace amounts of magnetite, hematite, pyrrhotite, stannite, bournonite, boulangerite, stibnite, galenobismutite, native bismuth, marcasite, geothite and malachite. The main gangue minerals are quartz and calcite. Wallrock is altered by sericitization, chloritization, pyritization, carbonitization and argillization. Arsenic and copper contents in arsenopyrite increase from stage I to stage III (from 31.28 to 33043 atom.% As) and (from 0.04 to 0040 atom.% Co). Going from stage I to stage III Fe and Mn contents in sphalerite decreases from 12.56 to 0.44 wt.% and from 0.24 to 0.01 wt.%, respectively. The compositional data of arsenopyrite in the early stage I indicate a temperature of $420{\sim}365^{\circ}C$ and sulfur fugacity of $10^{-6.5}{\sim}10^{-8.3}$ atm. Chalcopyrite and pyrrhotite assemblage suggest that Middle stage I was deposited at below $334^{\circ}C$. The compositional data of arsenopyrite in early stage II suggest a temperature range of $425{\sim}390^{\circ}C$ and sulfur fugacity codition of $10^{-6.4}{\sim}10^{-7.3}$ atm. Based on fluid inclusion the Middle stage II was regarded as to be deposited at $420{\sim}337^{\circ}C$ (Chi et al., 1989). Referring composition of sphalerite and stannite middle-late stage II seem to be deposited around $246^{\circ}C$ and $10^{-16.5}$ atm. sulfur fugacity. The ${\delta}^{34}S$ values of sulfide minerals in the Stage I, II, III range from 4.9 to 7.6%0 and indicate igneous ore fluid origin. Based on differences in mineral assemblages, chemical composition and chemical environments of Ohto and Tohyun mine its mineralization are considered to be formed at diffent mineralization ages and by different ore fluids.

  • PDF