• Title/Summary/Keyword: copper leaching

Search Result 109, Processing Time 0.022 seconds

Evaluation of Pretreatment Moisture Content and Fixation Characteristics of Treated Wood for Pressure Treatment of Japanese Red Pine and Japanese Larch Skin Timber with ACQ, CUAZ and CuHDO (소나무와 낙엽송 스킨팀버의 ACQ, CUAZ, CuHDO 가압처리를 위한 처리용 목재의 적정 함수율 및 처리목재의 정착 특성 평가)

  • Choi, Yong-Seok;Oh, Se-Min;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.481-489
    • /
    • 2011
  • This study was conducted to evaluate the pressure treatment characteristics of Japanese red pine and Japanese larch skin timber with ACQ-2, CUAZ-2 and CuHDO-1. The effect of moisture content (MC) on preservative treatability was investigated for Japanese red pine sapwood and Japanese larch heartwood, and fixation characteristics of CCA alternatives was also evaluated. Japanese red pine sapwood, which was dried below 30 percent MC, was fully penetrated with preservatives, and minimum requirement of preservative retention for the hazard class H3 was achieved. Through measuring preservative retention gradient in Japanese red pine sapwood, it was confirmed that the retention gradient of CuHDO-1 was steeper than that of both ACQ-2 and CUAZ-2. In particular, it was intensified at a higher MCs of wood samples (25∼30%). Japanese larch heartwood did not meet the minimum requirement of penetration and retention for the hazard class H3 over the range of pretreatment MCs tested. With presteaming under $121^{\circ}C$ for 12 hours, the treatability of Japanese larch heartwood was enhanced to meet the minimum requirement for the hazard class H3. The fixation rate of copper was much more faster under drying condition compared with nondrying condition; more than 95% of copper were fixed in 3~6 days and 1 day under drying conditions in Japanese red pine sapwood and Japanese larch heartwood, respectively. After 3-week fixation period at ambient temperature, the amount of mobile copper in treated wood sample that remains available for leaching from treated wood was the highest in the wood samples treated with ACQ-2, followed by CuHDO-1 and CUAZ-2. It was proportional to the amount of copper in treating solution.

Characterization of Heavy Metal-enriched Particles from Contaminated Soils in a Military Shooting Range (군사격장 오염토양 내 고농도 중금속함유 입자의 기초특성연구)

  • Kim, Jeeeun;Kim, Jeongjin;Bae, Bumhan;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.25-31
    • /
    • 2013
  • Civil and military firing ranges are usually contaminated with heavy metals such as lead and copper and remediation is required. Acid washing and extraction are common remediation methods. Lead contaminated firing range soil samples were collected and a preliminary study was conducted to evaluate the characteristics of the contamination and the contribution of high specific gravity particles. Ethylenediamine tetra acetic acid(EDTA) extraction was applied for the removal of heavy metal but the extraction was not feasible for the firing range soil. Even after the repeated EDTA extraction, the contamination were still over the Korean environmental standard indicating that soil particles highly contaminated with heavy metal which release the heavy metal ion even after the repeated extraction. Some colored and higher specific gravity particles were separated from the soil samples and analyzed. The colored particles have specific gravity of 2.5-6.6. The saturation ratio of Pb and EDTA was 4.9-32%. After removal of these colored particles, the sandy soil showed moderate contamination which can be treated with soil washing. This was proved with the five-level sequential extraction and TCLP tests.

A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea (덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구)

  • 박영석
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

Effect of engineered barriers on the leach rate of cesium from spent PWR fuel (가압경수로 사용후핵연료 중 세슘의 침출에 미치는 공학적 방벽 영향)

  • Chun Kwan Sik;Kim Seung-Soo;Choi Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.329-333
    • /
    • 2005
  • To identify the effect of engineered barriers on the leach rate of cesium from spent PWR fuel under a synthetic granitic groundwater, the related leach tests with and without bentonite or metals have been performed up to about 6 years. The leach rates were decreased as a function of leaching time and then became a constant after a certain period. The period in a bare spent fuel was much longer than that with bentonite or metal sheets. The cumulative fraction of cesium released from the spent fuel with bentonite or with copper and stainless steel sheets was steadily increased, but the fraction from bare fuel was rapidly and then sluggishly increased. However, the values deducted its gap inventory from the cumulative fraction of cesium released from the bare fuel was almost very close to the others. These suggest that the initial release of cesium from bare fuel might be dependant on its gap inventory and the effect of engineered barriers on the long-term leach rate of cesium would be insignificant but the rate with engineered barriers could be reduced in the initial transient period due to their retardation effect. And the long-term leach rate of cesium from spent fuel in a repository would be approached to a constant rate of $2\times10^{-2}g/m^2-day$.

  • PDF

Environmental Contamination and Best Management of Stone-dust from Quarry Mine (석산개발에 따른 주변 환경오염 및 석분토 처리를 위한 연구)

  • Lee, Pyeong-Koo;Youm, Seung-Jun;Kang, Min-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.315-332
    • /
    • 2010
  • All of the water and stone-dust samples with or without flocculant, in and around quarry mines, were analyzed for total concentrations of heavy metals, cyanide(CN), toxic organic compounds and organic phosphorus. Extraction experiments on stone-dust by EDTA and various pH solutions were also carried out, in order to evaluate the contaminant leaching from the long-term heaped stone-dust within quarry mines. The concentrations of $Cr^{6+}$, Hg, CN, TCE/PCE and total phosphorus in all samples (water and stone-dust) were under detection limits, confirming no environmental contamination from stone-dust in quarry mine areas. Lead and cadmium were not detected in all water samples. Copper and zinc were found in some water samples, and arsenic was detected in a few water samples. But they also showed levels much lower than the drinking water standard. Results of the extraction experiments by EDTA and pH solutions showed that Pb, Cr, Cd, Cu and Zn were leached out in less amounts or under detection limits. Arsenic was detected only at pH 3. From above results, we suggested that environmental contamination by quarry mine development is likely to be minor or negligible.

Effect of Contamination by the Abandoned Coal Mine Drainage on the Stream Water in Keumsan, Chungnam (금산(錦山) 폐탄광지역(廢炭鑛地域)의 오염(汚染)이 하천수(河川水)에 미치는 영향(影響))

  • Kim, Myung Hee;Min, Ell Sik;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.435-442
    • /
    • 1997
  • The research was carried out to investigate the contamination of stream water by the acid mine drainage originated from the abandoned coal mines and coal waste rock in Keumsan, Chungnam. The pH, sulfate and chemical compositions in the stream water were analyzed. At the polluted sites, the pH of stream water was the strong acid, ranging from 3.46 to 4.29. The pH shows negative correlations with sulfate, manganese, copper, zinc, iron and magnesium concentrations. Sulfate concentrations of the polluted stream water, 236.73-310.53mg/l, had 10 times more than those of the non-polluted stream water. The concentrations of heavy metals, Mn and Fe, in the polluted water were 0.56 - 0.83mg/l and 5.89 - 10.58mg/l, respectively. The Mn concentrations were 20 times higher than those of the non-polluted stream water. Compared with those in the non-polluted stream water, the Mg and Ca concentrations in the polluted stream water were high because of leaching from rock and soil to water by the acidifications. Calculated AMDI(Acid Mine Drainage Index) values are low in the polluted stream water, relative to those of the non-polluted water.

  • PDF

Separation of Valuable Metal from Waste Photovoltaic Ribbon through Extraction and Precipitation

  • Chen, Wei-Sheng;Chen, Yen-Jung;Yueh, Kai-Chieh
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • With rapid increasing production and installation, recycling of photovoltaic modules has become the main issue. According to the research, the accumulation of waste modules will reach to 8600 tons in 2030. Moreover, Crystalline-silicon (c-Si) Photovoltaic modules account for more than 90% of the waste. C-Si PV modules contain 1.3% of weight of photovoltaic ribbon inside which contains the most of lead, tin and copper in the PV modules, which would cause environmental and humility problem. This study provided a valuable metal separation process for PV ribbons. Ribbons content 82.1% of Cu, 8.9% of Sn, 5.2% of Pb, and 3.1% of Ag. All of them were leached by 3M of hydrochloric acid in the optimal condition. Ag was halogenated to AgCl and precipitated. Cu ion was extracted and separated from Pb and Sn by Lix984N then stripped by 3M H2SO4. The effect of the optimal parameters of extraction was also studied in this essay. The maximum extraction efficiency of Cu ion was 99.64%. The separation condition of Pb and Sn were obtained by adjusting the pH value to 4 thought ammonia to precipitate and separate Pb and Sn. The recovery of Pb and Sn can reach 99%.

Study on the production of porous CuO/MnO2 using the mix proportioning method and their properties (반응몰비에 따른 다공성 CuO/MnO2의 제조 및 특성 연구)

  • Kim, W.G.;Woo, D.S.;Cho, N.J.;Kim, Y.O.;Lee, H.S.
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2015
  • In this study, the porous CuO/MnO2 catalyst was prepared through the co-precipitation process from an aqueous solution of potassium permanganate (KMnO4), manganese(II) acetate (Mn(CH3COO)2·4H2O) and copper(II) acetate (Cu(CH3COO)2·H2O). The phase change in MnO2 was analyzed according to the reaction molar ratio of KMnO4 to Mn(CH3COO)2. The reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O was varied at 0.3:1, 0.6:1, and 1:1. The aqueous solution of Cu(CH3COO)2 was injected into a mixed solution of KMnO4 and Mn(CH3COO)2 to 10~75 wt% relative to MnO2. The Cu ion co-precipitates as CuO with MnO2 in a highly dispersed state on MnO2. The physicochemical property of the prepared CuO/MnO2 was analyzed by using the TGA, DSC, XRD, SEM, and BET. The different phase types of MnO2 were prepared according to the reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O. The results confirmed that the porous CuO/MnO2 catalyst with γ-phase MnO2 was produced in the reaction mole ratio of KMnO4 to Mn(CH3COO)2 as 0.6:1 at room temperature.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.