• 제목/요약/키워드: copper foil

검색결과 122건 처리시간 0.021초

소형(小型) 정전(靜電) 유도형(誘導型) 모터의 기초(基礎) 연구(硏究) (A Basic Study on Miniature Size Electrostatic Induction Meter)

  • 문재덕;이동훈
    • 센서학회지
    • /
    • 제2권1호
    • /
    • pp.65-74
    • /
    • 1993
  • 본(本) 연구(硏究)에서는 소형(小型) 정전유도형(靜電誘導型) 모터를 제작하고 이 모터에 인가하는 3상(相) 교류전압(交流電壓) 및 주파수(周波數)를 가변(可變)하였을 때의 회전자(回轉字)의 회전속도(回轉速度)의 특성을 실험적으로 검토하였다. 또한 정전유도형(靜電誘導型) 모터의 작동기구상(作動機構上) 회전자(回轉字) 표층물질(表層物質) 및 내층물질(內層物質)의 표면저항율(表面抵抗率), 비유전율(比誘電率) 및 전하완화시정수(電荷緩和時定數)를 변화시켜 회전자(回轉字) 및 고정자(固定子) 사이의 전계강도(電界强度) 및 회전자(回轉字) 표면물질상(表面物質上)의 표면유기전하(表面誘起電荷)의 분포(分布) 및 유기속도(誘起速度)를 변화시킴으로서 소형(小型) 정전유도형(靜電誘導型) 모터의 회전자의 회전속도에 미치는 영향을 검토하였다. 실험(實驗) 결과(結果), 회전자(回轉字) 표층물질(表層物質)의 비유전율(比誘電率), 표면저항률(表面抵抗率) 및 전하완화시정수(電荷緩和時定數) 및 내층물질(內層物質)의 비저항율(比抵抗率)이 모터의 회전속도(回轉速度)에 매우 큰 영향을 미침이 확인되었다. 또한 모터에 인가하는 3상(相) 전원(電源)의 전압(電壓) 및 주파수(周波數)도 모터의 회전(回轉)에 매우 큰 영향을 주며, 회전속도(回轉速度)는 인가전압(印加電壓) 및 주파수(周波數)에 일차(一次) 비례(比例)하여 증가함을 보여주었다. 회전자의 표층물질(表層物質)이 $BaTiO_{3}$ 80% 내층물질(內層物質)이 Cu 일때 무부하(無負荷) 최대속도(最大速度)는 4.5 kV, 220 Hz에서 5500 rpm이 얻어졌다.

  • PDF

CuO Nanograss as a Substrate for Surface Enhanced Raman Spectroscopy

  • Lee, Jun-Young;Park, Jiyun;Kim, Jeong-Hyun;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.249-249
    • /
    • 2013
  • Surface-enhanced Raman spectroscopy (SERS) is a sensitive approach to detect and to identify a variety of molecules. To enhance the Raman signal, optimization of the gap between nanostructures is quite important. One-dimensional materials such as nanowires, nanotubes, and nanograsses have great potential to be used in SERS due to their unique sizes and shape dependent characteristics. In this study we investigate a simple way to fabricate SERS substrates based on randomly grown copper oxide (CuO) nanowires. CuO nanograss is fabricated on pre-cleaned Cu foils. Cu oxidized in an ammonium ambient solution of 2.5 M NaOH and 0.1 M $(NH_4)_2S_2O_8$ at $4^{\circ}C$ for 10, 30, and 60 minutes. Then, Cu(OH)2 nanostructures are formed and dried at $180^{\circ}C$ for 2 h. With the drying process, the Cu(OH)2 nanostructure is transformed to CuO nanograss by dehydration reaction. CuO nanograss are grown randomly on Cu foil with the average length of 10 ${\mu}m$ and the average diameter of a 100 nm. CuO nanograsses are covered by Ag with various thicknesses from 10 to 30 nm using a thermal evaporator. Then, we immerse uncoated and Ag coated CuO nanowire samples of various oxidation times in a 0.001M methanol-based 4-mercaptopyridine (4-Mpy) in order to evaluate SERS enhancement. Raman shift and SERS enhancement are measured using a Raman spectrometer (Horiba, LabRAM ARAMIS Spectrometer) with the laser wavelength of 532 nm. Raman scattering is believed to be enhanced by the interaction between CuO nanograss and Ag island film. The gaps between Ag covered CuO nanograsses are diverse from <10 nm at the bottom to ~200 nm at the top of nanograsses. SERS signal are improved where the gaps are minimized to near 10s of nanometers. There are many spots that provide sufficiently narrow gap between the structures on randomly grown CuO nanograss surface. Then we may find optimal enhancement of Raman signal using the mapping data of average results. Fabrication of CuO nanograss based on a solution method is relatively simple and fast so this result can potentially provide a path toward cost effective fabrication of SERS substrate for sensing applications.

  • PDF