• Title/Summary/Keyword: coplanarity

Search Result 14, Processing Time 0.024 seconds

Line Based Transformation Model (LBTM) for high-resolution satellite imagery rectification

  • Shaker, Ahmed;Shi, Wenzhong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.225-227
    • /
    • 2003
  • Traditional photogrammetry and satellite image rectification technique have been developed based on control-points for many decades. These techniques are driven from linked points in image space and the corresponding points in the object space in rigorous colinearity or coplanarity conditions. Recently, digital imagery facilitates the opportunity to use features as well as points for images rectification. These implementations were mainly based on rigorous models that incorporated geometric constraints into the bundle adjustment and could not be applied to the new high-resolution satellite imagery (HRSI) due to the absence of sensor calibration and satellite orbit information. This research is an attempt to establish a new Line Based Transformation Model (LBTM), which is based on linear features only or linear features with a number of ground control points instead of the traditional models that only use Ground Control Points (GCPs) for satellite imagery rectification. The new model does not require any further information about the sensor model or satellite ephemeris data. Synthetic as well as real data have been demonestrated to check the validity and fidelity of the new approach and the results showed that the LBTM can be used efficiently for rectifying HRSI.

  • PDF

Development of Photogrammetric Rectification Method Applying Bayesian Approach for High Quality 3D Contents Production (고품질의 3D 콘텐츠 제작을 위한 베이지안 접근방식의 사진측량기반 편위수정기법 개발)

  • Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-42
    • /
    • 2013
  • This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.

Correspondence Matching of Stereo Images by Sampling of Planar Region in the Scene Based on RANSAC (RANSAC에 기초한 화면내 평면 영역 샘플링에 의한 스테레오 화상의 대응 매칭)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.242-249
    • /
    • 2011
  • In this paper, the correspondence matching method of stereo images was proposed by means of sampling projective transformation matrix in planar region of scene. Though this study is based on RANSAC, it does not use uniform distribution by random sampling in RANSAC, but use multi non-uniform computed from difference in positions of feature point of image or templates matching. The existing matching method sampled that the correspondence is presumed to correct by use of the condition which the correct correspondence is almost satisfying, and applied RANSAC by matching the correspondence into one to one, but by sampling in stages in multi probability distribution computed for image in the proposed method, the correct correspondence of high probability can be sampled among multi correspondence candidates effectively. In the result, we could obtain many correct correspondence and verify effectiveness of the proposed method in the simulation and experiment of real images.

Realization of a High Precision Inspection System for the SOP Types of ICs (SOP형 IC의 고 정밀 외관검사 시스템 구현)

  • Tae Hyo Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.165-171
    • /
    • 2004
  • Owing to small sizes and high density to the semiconductor It, it is difficult to discriminate the defects of ICs by human eyes. High precision inspection system with computer vision is essentially established for the manufacturing process due to the variety of defective parts. Especially it is difficult to implement the algorithm for the coplanarity of IC leads. Therefore in this paper, the inspection system which can detect the defects of the SOP types of ICs having 1cm${\times}$0.5cm of the chip size is implemented and evaluated it's performance. In order to optimally detect various items, some principles of geometry are theoretically presented , length measurement, pitch measurement, angle measurement, brightness of image and correcton of position. The interface circuit is designed for implementation of inspection system and connected the HANDLER. In the result, the system could detect two ICs' defects per second and confirmed the resolution of 20$\mu$m per pixel.

  • PDF