• 제목/요약/키워드: cooperative positioning system

검색결과 21건 처리시간 0.022초

노드의 밀도를 이용한 상호 협력 위치 측정 시스템 (Cooperative Positioning System Using Density of Nodes)

  • 손철수;유남현;김원중
    • 한국정보통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.198-205
    • /
    • 2007
  • 유비쿼터스 환경에 있는 사용자는 현재 자신의 위치, 시간 그리고 주변의 상태에 기반한 상황 인식 서비스를 받을 수 있다. 이러한 상황 인식 컴퓨팅에서 위치 기반서비스는 매우 중요한 역할을 한다. 위치를 측정하기 위하여 전용 장비를 설치하고 운영하는 데 많은 비용이 소요되기 때문에 기존의 WLAN(Wirless Local Area Netowork) 인프라스트럭처가 구축된 환경에서 무선 장비만을 이용하여 위치를 측정하는 방법들이 연구되고 있다. 이미 위치가 알려지고 고정된 AP(Access Point)와 노드간의 RSSI(Received Signal Strength Indicator)만을 이용하는 비콘 기반의 위치 측정 시스템 보다 무선 장비들 간의 RSSI 까지도 이용하는 상호 협력 위치 측정 시스템(Cooperative Positioning System)은 정확성이 높기 때문에 많은 관심을 끌고 있다. 본 논문에서는 상호 협력 위치 측정 시스템 중의 하나인 기존의 WiPS(wireless LAM based indoor Positioning System)의 문제점을 분석하고, 이웃하는 노드간의 영향 관계를 밝히고, 노드의 밀도에 따라 위치 수렴 조정 계수를 결정하여 성능을 개선한 WiCOPS-d(Wireless Cooperative Positioning System using node density)를 제안한다.

Radio Frequency Based Emergency Exit Node Technology

  • Choi, Youngwoo;Kim, Dong Kyoo;Kang, Do Wook;Choi, Wan Sik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권1호
    • /
    • pp.91-100
    • /
    • 2013
  • This paper introduces an indoor sensor fusion wireless communication device which provides the Location Based Service (LBS) using fire prevention facility. The proposed system can provide information in real time by optimizing the hardware of Wi-Fi technology. The proposed system can be applied to a fire prevention facility (i.e., emergency exit) and provide information such as escape way, emergency exit location, and accident alarm to smart phone users, dedicated terminal holders, or other related organizations including guardians, which makes them respond instantly with lifesaving, emergency mobilization, etc. Also, the proposed system can be used as a composite fire detection sensor node with additional fire and motion detect sensors.

TWR 기반 군집 협업측위 시스템의 오차 전파 분석 (Analysis of Error Propagation in Two-way-ranging-based Cooperative Positioning System)

  • 임정민;이창은;성태경
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.898-902
    • /
    • 2015
  • Alternative radio-navigation technologies aim at providing continuous navigation solution even if one cannot use GNSS (Global Navigation Satellite System). In shadowing region such as indoor environment, GNSS signal is no longer available and the alternative navigation system should be used together with GNSS to provide seamless positioning. For soldiers in battlefield where GNSS signal is jammed or in street battle, the alternative navigation system should work without positioning infrastructure. Moreover, the radio-navigation system should have scalability as well as high accuracy performance. This paper presents a TWR (Two-Way-Ranging)-based cooperative positioning system (CPS) that does not require location infrastructure. It is assumed that some members of CPS can obtain GNSS-based position and they are called mobile anchors. Other members unable to receive GNSS signal compute their position using TWR measurements with mobile anchors and neighboring members. Error propagation in CPS is analytically studied in this paper. Error budget for TWR measurements is modeled first. Next, location error propagation in CPS is derived in terms of range errors. To represent the location error propagation in the CPS, Location Error Propagation Indicator (LEPI) is proposed in this paper. Simulation results show that location error of tags in CPS is mainly influenced by the number of hops from anchors to the tag to be positioned as well as the network geometry of CPS.

재난 구조용 다중 로봇을 위한 GNSS 음영지역에서의 TWR 기반 협업 측위 기술 (TWR based Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application)

  • 이창은;성태경
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.127-132
    • /
    • 2016
  • For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.

Seamless Routing and Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application

  • Lee, Chang-Eun;Im, Hyun-Ja;Lim, Jeong-Min;Cho, Young-Jo;Sung, Tae-Kyung
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.262-272
    • /
    • 2015
  • In particular, for a practical mobile robot team to perform such a task as that of carrying out a search and rescue mission in a disaster area, the network connectivity and localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a Global Positioning System is unavailable. This paper proposes the new collective intelligence network management architecture of multiple mobile robots supporting seamless network connectivity and cooperative localization. The proposed architecture includes a resource manager that makes the robots move around and not disconnect from the network link by considering the strength of the network signal and link quality. The location manager in the architecture supports localizing robots seamlessly by finding the relative locations of the robots as they move from a global outdoor environment to a local indoor position. The proposed schemes assuring network connectivity and localization were validated through numerical simulations and applied to a search and rescue robot team.

위성항법 시스템 및 기술 동향 (Survey on Navigation Satellite System and Technologies)

  • 이상욱;유준규;변우진
    • 전자통신동향분석
    • /
    • 제36권4호
    • /
    • pp.61-71
    • /
    • 2021
  • Navigation satellite systems (GPS, GLONASS etc.) provide three main services, i.e., positioning for location based services, navigation for multi-modal transportation services, and timing for communication and critical infrastructure services. They were started as military systems but were extended to civil service. Navigation satellite navigation system began with GPS in the USA and GLONASS in Russia at nearly the same time. Indian NavIC and Chines BDS announced their FOCs in 2016 and 2020, respectively and European Galileo and Japanese QZSS are catching up others. In these days, Navigation Satellite System, Positioning, Navigation, and Timing services are part of our daily life very closely. They are required for autonomous driving car, Unmanned vehicles like UAV, UGV, and UMV, 5G/6G telecommunications, world financial system, power system, survey, agriculture, and so on. The services among navigation satellite systems are very competitive and also cooperative one another. This article describes the status of these systems and evolution in the technical and service senses, which may be helpful for planning korea positioning system(KPS).

Positioning Scheme using Acceleration Factor for Wireless Sensor Networks

  • Park, Na-Yeon;Son, Cheol-Su;Lee, Sung-Jae;Hwang, In-Moon;Kim, Won-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.459-465
    • /
    • 2008
  • Locations of nodes as well as gathered data from nodes are very important because generally multiple nodes are deployed randomly and data are gathered in wireless sensor network. Since the nodes composing wireless sensor network are low cost and low performance devices, it is very difficult to add specially designed devices for positioning into the nodes. Therefore in wireless sensor network, technology positioning nodes precisely using low cost is very important and valuable. This research proposes Cooperative Positioning System, which raises accuracy of location positioning and also can find positions on multiple sensors within limited times.

모바일 센서 네트워크에서 효율적인 노드 위치 결정 (The Efficient Computation of Node Position on Mobile Sensor Network)

  • 박나연;손철수;김원중
    • 한국전자통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.391-398
    • /
    • 2010
  • 모바일 센서 네트워크는 기존의 위치가 고정된 무선 센서 네트워크와는 다르게 비컨 노드와 일반 노드가 모두 움직일 수 있기 때문에 위치 측정 알고리즘이 일반적인 무선 센서 네트워크 환경의 알고리즘 보다 어렵다. 특히 모바일 센서 네트워크에서 노드의 움직임이 빠를 경우 기존의 위치 측정 알고리즘으로는 원하는 시간 내에 위치를 측정할 수 없다. 본 연구에서는 이러한 모바일 센서 네트워크에서의 위치 측정 알고리즘을 제안하고 성능을 향상시켜 실시간에 위치를 측정할 수 있는 기법을 연구하였다.

Positioning and Driving Control of Fork-type Automatic Guided Vehicle With Laser Navigation

  • Kim, Jaeyong;Cho, Hyunhak;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권4호
    • /
    • pp.307-314
    • /
    • 2013
  • We designed and implemented a fork-type automatic guided vehicle (AGV) with a laser guidance system. Most previous AGVs have used two types of guidance systems: magnetgyro and wire guidance. However, these guidance systems have high costs, are difficult to maintain with changes in the operating environment, and can drive only a pre-determined path with installed sensors. A laser guidance system was developed for addressing these issues, but limitations including slow response time and low accuracy remain. We present a laser guidance system and control system for AGVs with laser navigation. For analyzing the performance of the proposed system, we designed and built a fork-type AGV, and performed repetitions of our experiments under the same working conditions. The results show an average positioning error of 51.76 mm between the simulated driving path and the driving path of the actual fork-type AGV. Consequently, we verified that the proposed method is effective and suitable for use in actual AGVs.

HEVA: Cooperative Localization using a Combined Non-Parametric Belief Propagation and Variational Message Passing Approach

  • Oikonomou-Filandras, Panagiotis-Agis;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.397-410
    • /
    • 2016
  • This paper proposes a novel cooperative localization method for distributed wireless networks in 3-dimensional (3D) global positioning system (GPS) denied environments. The proposed method, which is referred to as hybrid ellipsoidal variational algorithm (HEVA), combines the use of non-parametric belief propagation (NBP) and variational Bayes (VB) to benefit from both the use of the rich information in NBP and compact communication size of a parametric form. InHEVA, two novel filters are also employed. The first one mitigates non-line-of-sight (NLoS) time-of-arrival (ToA) messages, permitting it to work well in high noise environments with NLoS bias while the second one decreases the number of calculations. Simulation results illustrate that HEVA significantly outperforms traditional NBP methods in localization while requires only 50% of their complexity. The superiority of VB over other clustering techniques is also shown.