• Title/Summary/Keyword: cooling using of water

Search Result 912, Processing Time 0.027 seconds

Cooling Performance of Geothermal Heat Pump using Alluvium Aquifer (충적대수층을 이용한 지열히트펌프시스템의 냉방성능)

  • Kang, Byung-Chan;Park, Jun-Un;Lee, Chol-Woo;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.561-566
    • /
    • 2009
  • Alluvium is sedimentary stratum and composed of gravel, sand, silt, clay. Permeability of alluvium is the higher. If alluvium have lots of aquifer, will be of great use heat source and heat sink of heat pump. Alluvium aquifer contain the thermal energy of surrounding ground. Also geothermal heat pump using alluvium aquifer reduce expenses than general geothermal heat pump, because geothermal heat pump using alluvium aquifer make use of single well. In this study geothermal heat pump using alluvium aquifer was installed and tested for a building. The heat pump capacity is 30USRT. Temperature of ground water is in $12{\sim}17^{\circ}C$ annually and the quality of the water is as good as living water. The heat pump cooling COP is 4.4 ~ 4.7. The system cooling COP is 3.25 ~ 3.6. This performance is as good as BHE type ground source heat pump.

  • PDF

A Study on the Rapid Cooling Vacuum System for the Storage and Transportation of the Cold Agriculture and Livestock Products (농축산물의 저장 및 유통을 위한 감압증발 급냉각 시스템에 관한 연구)

  • 김성규;김원녕;김경석;최순열;전현필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.26-36
    • /
    • 1997
  • Recently, the new refrigerating system, using non - fluorinated hydrocarbon refrigerants has to be developed for the agricultural fields. One of that kinds of systems is the cooling system using the water vapor and vacuum, in which the water evaporate at the low temperature under vacuum and absorb the large amount of the latent heat. If vapor with large amount of latent heat is removed from the system, the system is cooled accordingly. The characteristics of cooling under the vacuum was observed and measured using experimental apparatus, which is consisted of vacuum chamber, the ejectors, the pumps and the measurement apparatus. As the results of experiments, we know that the evaporation in the vacuum occurs vigorously when the materials to be cooled has more amounts of heat before cooling, and by which effects the materials can be cooled. The cooling vacuum system is more efficient than other methods when the agricultural products is chilled or dried.

  • PDF

A study on the counter-flow cooling tower performance analysis using NTU-method (NTU법을 이용한 대향류형 냉각탑의 성능해석에 관한 연구)

  • 김영수;서무교;이상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.598-604
    • /
    • 1999
  • The thermal performance of cooling towers is affected by the temperature of inlet water, wet bulb temperature of entering air add water-air flow rate. In this study, the effects of these variables are simulated using NTU-method and experimentally investigated for the counter-flow cooling towers. The simulation program to evaluate these variables which affect the performance of cooling tower was developed. The maximum errors between the results of simulations and experiments were 3.8% under the standard design conditions and 5.4% under the other conditions. The performance was increased up to 46~50% as the water loading was increased from $6.8m^3$/$hr\cdot m^2$ to $15.9m^3$/$hr\cdot m^2$. The range was reduced up to 56~42% when the wet bulb temperature of the entering air was increased from $22^{\circ}C\; to\; 29^{\circ}C.$

  • PDF

Characteristics of Closed Circuit Cooling Tower with Multi Path on Cooling Water Inlet Conditions (냉각수 변화에 따른 멀티패스 밀폐식 냉각탑의 성능)

  • Shim, Gyu-Jin;Baek, Seung-Moon;Moon, Choon-Geun;Yoon, Jung-In;Kim, Eun-Pil;Kwon, O-Ick
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.597-602
    • /
    • 2008
  • The experiment of performance about closed-wet cooling tower(CWCT) was conducted in this study. The test section has the cooling water that flows from top part of a heat exchanger that has an entrance of cooling water with one and multi path. The heat exchanger consists of 15.88mm tubes with ten rows and ten columns and staggered arrangement. In this experiment, heat and mass transfer coefficients and range are calculated with variations of cooling water and path. The results indicated that operating CWCT using two path have the high values of heat and mass transfer coefficients and range than one path.

  • PDF

Performance Characteristics of a CO2 Cooling and Water Heating System with a Twin-rotary Compressor (트윈로터리 압축기 적용 냉방 및 급탕 겸용 이산화탄소 시스템의 성능특성에 관한 연구)

  • Cho, Hong-Hyun;Lee, Ho-Sung;Baek, Chang-Hyun;Kim, Yong-Chan;Cho, Sung-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.230-237
    • /
    • 2008
  • The objective of this paper is to investigate the performance characteristics of a $CO_2$ cooling and water heating system using a twin-rotary compressor with the compression volume ratio of 0.6. The cooling performances of the $CO_2$ heat pump were measured and analyzed with the variations of charge amount, EEV opening, and compressor frequency. In addition, the performance of the combined system including cooling and water heating was also measured and analyzed by varying inlet temperature of the EEV. As a result, the optimal normalized charge and cooling COP in the cooling mode were 0.307 and 2.06, respectively. The application of the water heating into the $CO_2$ heat pump improved the cooling performance over 78% and decreased the EEV inlet temperature by $8^{\circ}C$, which can increase system reliability.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

Development of Nutrient Solution Cooling System in Hydroponic Greenhouse (수경재배 온실의 양액냉각시스템 개발)

  • 남상운;김문기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.113-121
    • /
    • 1994
  • Since it is difficult to expect the normal production of plants in greenhouses during hot summer season in Korea, certain provisions on the control of extreme environmental factors in summer should be considered for the year-round cultivation in greenhouses. This study was carried out to find a method to suppress the temperature rising of nutrient solution by cooling, which is able to contribute to the improvement of the plant growth environment in hydroponic greenhouse during hot summer season. A mechanical cooling system using the counter flow type with double pipe was developed for cooling the nutrient solution efficiently. Also the heat transfer characteristics of the system was analysed experimentally and theoretically, and compared with the existing cooling systems of nutrient solution. The cooling capacities of three different Systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipe, were evaluated. The performance of each cooling system was about 41 %, 70% and 81 % of design cooling load in hydroponic greenhouse of 1 ,000m$^2$ on the conditions that the flow rate of ground water was 2m$^3$/hr and the temperature difference between two liquids was 10 ˚C According to the results analysed as above, the cooling system was found to have a satisfactory cooling capability for regions where ground water supply is available. Fer the other regions where ground water supply is restricted, more efficient cooling System should be developed.

  • PDF

Cooling Performance of Ground source Heat Pump using Effluent Ground Water (유출지하수 열원 지열히트펌프시스템의 냉방성능)

  • Park, Geun-Woo;Nam, Hyun-Ku;Kang, Byung-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effluent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000ton/day$. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

Cooling Performance of Ground source Heat Pump using Effluent Ground Water (유출지하수 열원 지열히트펌프시스템의 냉방성능)

  • Park, Geun-Woo;Nam, Hyun-Ku;Kang, Byung-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.471-476
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and c lose type heat pump system using effluent ground water was installed and tested for it church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000$ ton/day. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

An experimental study of freezing phenomenon with supercooled water region (과냉각을 동반하는 물의 동결현상에 관한 실험)

  • Yoon, J.I.;Kim, J.D.;Kum, J.S.;Chu, M.S.;Kamata, Y.;Kato, T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.104-111
    • /
    • 1997
  • The freezing phenomenon of saturated water with the supercooled region in a horizontal circular cylinder has been studied experimentally by using the holographic real time interferometry technique. From the experiments, it was found that there were three types of freezing patterns. The first is the annular ice layer growing from the cylinder surface at a high cooling rate; the next is the asymmetric ice layer at a moderate cooling rate; and the last is the instantaneous ice layer growth over the full region at lower cooling rate. As the water was coolde from room temperature to the subfreezing point passing through the density inversion point, the freezing pattern was largely affected by the inversion phenomenon, which had much effected the free convection and was susceptible to influences from the cooling rate. When the cooling rate is high, supercooling energy is released before the water is sufficientry mixed by free convection. On the other hand, when the cooling rate is low, there is much time for the water to be mixed by free convection. This seems to be the reason why the different ice layer growths occur.

  • PDF