• Title/Summary/Keyword: cooling COP

Search Result 369, Processing Time 0.027 seconds

An Experimental Study on the Performance of a Simultaneous Heating and Cooling Heat Pump in the Cooling-only and Cooling-main Operation Mode with the Variation of the Indoor Air Temperature (동시냉난방 열펌프 시스템의 냉방전용 및 냉방주체 운전모드에서의 실내기온 변화에 따른 성능특성에 관한 실험적 연구)

  • Ahn, Jae-Hwan;Joo, Young-Ju;Kang, Hoon;Chung, Hyun-Joon;Kim, Yong-Chan;Choi, Jong-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2165-2170
    • /
    • 2008
  • The cooling load in winter season is significant in many commercial buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Therefore, the development of a multi-heat pump which can cover heating and cooling simultaneously for each indoor unit is required. In this study, the characteristics and performance of a simultaneous heating and cooling heat pump in the cooling-only and cooling-main operating mode was investigated experimentally with a variation of indoor air dry bulb temperature which is from $21^{\circ}C$ to $35^{\circ}C$. EEV opening was adjusted from 20% to 24% during the tests. When the indoor air temperature varied, the performance in the cooling-only mode was more sensitive to the temperature than in the cooling-main mode. The total capacity and COP were increased by 53.8% and 48.1%, respectively, in the cooling-main, while those were increased by 19.6% and 19.3% in the cooling-only mode. The performance differences between the two operating modes became larger at lower temperatures, especially for the COP.

  • PDF

Study of Compressor-Performance Improvement in Automotive Air-Conditioning System (자동차용 에어컨 압축기의 성능 향상에 대한 연구)

  • Kim, Young Shin;Yoo, Seong Yeon;Na, Seung Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.713-718
    • /
    • 2015
  • The purpose of this study is to realize compressor-performance improvements in the fuel economy of an automotive air-conditioning system. We conduct cooling performance tests in a compressor calorimeter test stand. To improve the cooling performance, we investigate the increase in the suction flow rate and the decrease in the discharge dead volume. Based on the results of the test, we found that the cooling capacity and the coefficient of performance (COP) of the compressors were improved as follows. The cooling performance improved greater at high speeds than low speeds in the case of an increase in the suction flow rate increase, and it improved more at low speeds than at high speed when there was a decrease in the discharge dead volume. When both of the above factors were included, we observed that the improvement effects were generally balanced for both high- and low-speed modes, and there was a significant improvement in the discharge temperature. The improvement was found to be about 3.2% at low speed, 8.3% at high speed during in cooling performance improvement, about 5.8% at low speed and about 6.2% at high speed in COP improvement, and there was a decrease of about $3^{\circ}C$ at low speed and a $5^{\circ}C$ decrease at high speed in discharge temperature.

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Development of a Conversion Unit converting the existing air conditioner to Heat Pump System for the Emergency Shelter (재해임시주거 냉난방을 위하여 기존 에어컨을 열펌프로 전환하는 변환기 개발)

  • Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.77-84
    • /
    • 2011
  • Korea and some other countries located in the northern hemisphere employ the air conditioner for the space cooling in the hot summer season and also some kinds of heaters for the space heating in the cold winter season. Especially in Korea, a great number of air conditioners of about 12,700,000 sets have been used these days. However, they are used for a short operation period of only 58 days a year, which results in the material and economic losses. To solve this problem and employ this system for the emergency shelter, a new conversion unit which could convert the existing air conditioner to a heat pump system for simultaneous heating and cooling was developed in this study, and the thermal performance was tested. The results indicated that the indoor air could be heated from $27^{\circ}C$ to $39^{\circ}C$ by the air conditioner converted to a heat pump system with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, and cooled from $20^{\circ}C$ to $15^{\circ}C$ by the converted system with the ambient temperature variation of $20^{\circ}C{\sim}35^{\circ}C$. And also the heating COP increased from 3.3 to 5.3 in case of the heat exchange of the super cooling(HESC) circuit and from 3.0 to 4.0 in case of the By-pass with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, respectively, whereas the cooling COP decreased from 3.1 to 2.1with the increase of the ambient temperature from $20^{\circ}C$ to $35^{\circ}C$.

Experimental Study on Performance Comparison of Air-Conditioner with PF Heat Exchanger (PF 열교환기를 적용한 공조기의 성능 비교 실험연구)

  • Kwon, Young-Chul;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.470-475
    • /
    • 2009
  • In the present study, the heat transfer characteristics of the fin-tube and PF heat exchangers and the performances of the air-conditioner are experimentally investigated. Also, Cooling Seasonal Performance Factor(CSPF) of the air-conditioner is evaluated. For the heat exchanger experiment, the heat transfer and pressure drop are obtained. For the air-conditioner experiment, the cooling capacity, input power and COP are obtained. The air-enthalpy calorimeter and the constant temperature water bath are used. As the inlet air velocity increases, the heat transfer rate and pressure drop of the heat exchanger increased. PF heat exchanger has smaller refrigerant weight and larger capacity and COP than the fin-tube heat exchanger. The performance of PF-2 heat exchanger with the squarer fin is more excellent than that of PF-1 heat exchanger with the triangler fin. Also, CSPF of the fm -tube and PF heat exchanger is evaluated.

Performance of a Reciprocating Compressor Equipped with Auxiliary Port (보조 흡입구가 장착된 왕복동 압축기의 성능 분석)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.163-170
    • /
    • 2008
  • Auxiliary port which had been known to be used to reduce the expansion loss of a refrigeration system was applied to a R134a reciprocating compressor in a household refrigerator cycle with an intention of improving the compressor performance. Effects of the auxiliary port on the compressor performance was investigated by a computer simulation program. When a simple hole was made on the side wall of the cylinder as an auxiliary port and surrounding gas inside the compressor shell was assumed to be drawn into the cylinder through the hole, maximum COP improvement of 1.66% was obtained. With auxiliary port equipped with a plate type of check valve, maximum COP was raised to be 1.99%. COP improvement was more distinctive with decreasing the discharge pressure; COP improvement was 5% with discharge pressure of 7 bar.

  • PDF

Performance of a Reciprocating Compressor Equipped with Auxiliary Port (보조 흡입구가 장착된 왕복동 압축기의 성능 분석)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.637-644
    • /
    • 2008
  • Auxiliary port which had been known to be used to reduce the expansion loss of a refrigeration system was applied to a R134a reciprocating compressor in a household refrigerator cycle with an intention of improving the compressor performance. Effects of the auxiliary port on the compressor performance was investigated by a computer simulation program. When a simple hole was made on the side wall of the cylinder as an auxiliary port and surrounding gas inside the compressor shell was assumed to be drawn into the cylinder through the hole, maximum COP improvement of 1.66% was obtained. With auxiliary port equipped with a plate type of check valve, maximum COP was raised to be 1.99%. COP improvement was more distinctive with decreasing the discharge pressure; COP improvement was 5% with discharge pressure of 7 bar.

Optimization of Liquid Desiccant Cooling Cycle (액체 제습식 냉방 사이클의 최적화)

  • Kim, Seon-Chang;Kim, Young-Lyoul;Lee, Sang-Jae;Jeon, Dong-Soon;Choi, Jaug-Hyeon;Kwon, Hyeok-Min;Lee, Chang-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.673-678
    • /
    • 2009
  • This paper presents the optimization process of liquid desiccant cooling cycle using LiCl aqueous solution as a working fluid. Operating conditions and design factors for heat exchangers were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of $dT_{hw}$ on system performances was also examined. As $dT_{hw}$ increases, the cooling capacity increases and COP decreases.

  • PDF

Optimization Design of Liquid Desiccant Cooling System (액체 제습식 냉방 시스템의 최적 설계)

  • Jeon, Dong-Soon;Lee, Sang-Jae;Kim, Seon-Chang;Kim, Young-Lyoul;Lee, Chang-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.419-428
    • /
    • 2010
  • This paper presents the optimization process of liquid desiccant cooling system using LiCl aqueous solution as a working fluid. Operating conditions(mass flow rate, conditioner outlet concentration, difference concentration) and design factors for heat exchangers(difference temperature of the district heating water, leaving temperature difference of the conditioner, leaving temperature difference of the regenerator, air temperature difference of the conditioner, air temperature difference of the regenerator) were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of difference temperature of hot water on system performances was also examined. As difference temperature of the district heating water increases, the cooling capacity increases and COP decreases.

Study on the Cooling Performance of Single and Cascade Refrigeration Systems Using Thermoelectric Modules (열전소자를 이용한 싱글 및 캐스케이드 냉동시스템의 냉각 성능에 관한 연구)

  • Lim, Changhak;Kim, Dongwoo;Kim, Yongchan;Seo, Kookjeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.641-646
    • /
    • 2013
  • The purpose of this study is to improve the cooling performance of single and cascade refrigeration systems using thermoelectric modules. The system consists of a heat sink, fan, and thermoelectric module. The operating parameters considered in this study include power distribution between the first- and second-stage thermoelectric modules, air flow, and variable condensing unit. The cooling capacity increased with decreases in the temperature difference between hot and cold surfaces, but decreased with increases in the condensing temperature. The COP decreased with increasing electric power of the thermoelectric module because of the increased Joule heat. The cooling performance improvement using the thermoelectric module is represented by the freezer temperature.