• Title/Summary/Keyword: cool-season grass

Search Result 56, Processing Time 0.025 seconds

An Overview of Teff (Eragrostis teff Zuccagni) Trotter) as a Potential Summer Forage Crop in Temperate Systems

  • Habte, Ermias;Muktar, Meki S.;Negawo, Alemayehu T.;Lee, Sang-Hoon;Lee, Ki-Won;Jones, Chris S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.185-188
    • /
    • 2019
  • The production of traditional cool season grasses in temperate regions is becoming hampered during summer seasons due to water deficit. Thus, incorporating water use efficient warm season annual grasses are generally considered to fill the gap of summer season forage reduction that would offer considerable flexibility and adaptability to respond to forage demand. Teff (Eragrostis teff Zuccagni) Trotter) is, a C4 drought tolerant warm season annual grass primarily grown for grain production, recently gaining interest for forage production particularly during summer season. Previous reports have showed that teff is palatable and has comparable forage biomass and feed quality as compared to other warm season annual grasses which would make it an alternative forage. However, the available data are not comprehensive to explore the potential of teff as forage, hence further assessment of genotype variability and performance along with compatibility study of teff with forage production system of specific environment is key for future utilization.

Studies on the Cultuer of Cool-Season Grasses in Forest (목초의 임간재배에 관한 연구)

  • 이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.33-36
    • /
    • 1985
  • This experiment was carried out to investigate the effect of crown density of trees on the growth and yield of cool-season grasses in forest. The species used in this study was orchard-grass (Dactylis glomerata L.) and 4 levels of tree crown density(O=full sunlight, 25, 50 and 75%) were treated. The experiment was performed at the experimental filed of the Livestock Experiment Station in Suweon, during 1979 to 1950. The results obtained are summarized as follows: 1. Maximum leaf area was obtained at 25% crown density of trees, followed by 0, 50 and 75%, regardless of cutting times. 2. Plant height tended to increase as the crown density of trees increased. However, there was no difference between 0% and 25% crown density of trees. 3. There was a negative correlation between plant height and leaf area of orchardgrass grown under pine trees. 4. The more dry matter yield of orchardgrass was obtained at 25% crown density of trees (p<0.05), follwed by 0, 50 and 75%, respectively. However, there was no significant difference between 0% and 50% crown density of trees. Therefore it is suggested that the critical level of crown density of trees is 50% to culture of cool-season grasses in forest.

  • PDF

The Effect of Shade Net on Summer Stress of Cool-season Turfgrass (차광이 반지형 잔디의 여름철 하고현상 감소에 미치는 영향)

  • 이재필;김석정;서한용;이상재;김태준;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.2
    • /
    • pp.51-64
    • /
    • 2001
  • Summer stress is one of the serious problems on cool-season grass at the soccer fields in Korea during heavy rainy season. This study was conducted to intestigate the effect of shade net with regard to its percent (0, 50, 75), color (black, green), height (0 cm, 30 cm) and time (7 hr, 24 hr) on turf canopy temperature, light intensity, leaf color, turf performance, clipping yield and root dry weight of cool-season turfgrass. Turf canopy temperature was 6~13$^{\circ}C$ under black and green shade net when temperature was over 4$0^{\circ}C$. Light intensity was also decreased from 40 to 94% under black and green shade net compared to control. Black shade net was more effective than green net in reduction of temperature and light intensity. Green shade net was found to be better for photosynthesis of cool-season grass. Leaf color, turf performance, clipping yield, and root dry weight were better and increased under 50% and 75% shade net. 50% black shade net with 30cm height and 7 hr treatment showed the best turf performance. It can be concluded that 50% and 75% green shade net can be used fur reducing summer stress on cool-season grass after soccer marches during heavy rain season. The shade net decreased the turf canopy temperature and reduced heating damage of cool-season turfgrass.

  • PDF

First Report of Summer Patch Caused by Magnaporthiopsis poae on Cool Season Grass (Magnaporthiopsis poae에 의한 한지형 잔디의 여름잎마름병 보고)

  • Han, Ju Ho;Ahn, Chang Hyun;Lee, Seung-Yeol;Back, Chang-Gi;Kang, In-Kyu;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.196-200
    • /
    • 2016
  • Symptoms of summer patch were observed on Kentucky bluegrass (Poa pratensis L.) cv. "Midnight II" from mid-June in 2015 in Seoul, Korea. The symptoms appeared as leaf blight, root rot, and frog-eye patch, which are typical of summer patch. To identify the causal agent of these symptoms, a pathogen was isolated from diseased leaves and roots, and the cultural, morphological, and phylogenetic characteristics were analyzed. The isolate reached 50-60 mm on potato dextrose agar (PDA) after 10 days as a white-grey mycelium with septa, and became olive-green or brown from the center. Phialide-like structures were observed at the ends of hyphae, and conidia were rarely observed. A phylogenetic analysis was conducted based on large subunit (LSU) and RNA polymerase II large subunit (RPB1) sequences. According to this analysis, the isolated pathogen was confirmed to be Magnaporthiopsis poae. In a pathogenicity test, summer patch symptoms were observed at 20 days after inoculation using the same grass cultivar. This is the first report of summer patch disease caused by M. poae on cool season grass in Korea.

Analysis of Light Environment to Turfgrass Growth under the Roof Membrane on Stadium (경기장 지붕의 막구조가 잔디생육에 미치는 광환경에 대한 영향분석)

  • Joo Young Kyoo;Lee Dong Ik;Song Kyoo D.;Shim Gyu-Yul
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 2004
  • This study was conducted to analyze the effect of roof membrane on light environment that influence on turfgrass growth under domed stadium. Roof structure on experimental plot was constructed with PTFE and PE same as Busan Asiad Main Stadium. Tested turfgrass species were combinations of cool-season grasses(Kentucky Bluegrass, perennial ryegrass, $KBG80+PR20\%,\;KBG33+PR33+Fine fescue33\%)$ and warm-season grasses(zoysiagrass, 'An-yang middle-leaf, 'Zenith', Bermudagrass) established with seeding or sodding. The experimental set-up and research work were initiated November 1999 and finished on August 2000 at near Busan Asiad Main Stadium. By the result of computer simulation of daylight radiant energies on the turf surface were lower than needs of normal sport turf growth. The shortage of radiant resulted pest infection on cool-season grass mixture compared with warm-season. But turf color and density showed the best results on Kentucky bluegrass or its mixture plot. Over all the results showed that the best quality of turfgrass growth was occurred on full sun area, and the next was under PTFE membrane. The application of artificial lighting system may increase the turfgrass growth under domed stadium(partially) covered with roof membrane.

Evaluation of Host Resistance of 18 Warm-Season and 20 Cool-Season Turfgrass Species and Cultivars to Spodoptera depravata(Butler) (잔디밤나방에 대한 난지형 잔디와 한지형 잔디의 내충성 평가)

  • 박봉주
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.74-81
    • /
    • 2003
  • The need for insect and mite resistant turfgrass cultivars arose because of problems associated with pesticide use. Representative cultivars and genotypes of 18 warm-season turfgrass [Zoysia japonica Steud., Z. japonica${\times}$Z. metrella hybrids, Z. japonica${\times}$Z. tenuifotia hybrids, Z. matrella (L.) Merr., Cynodon dactylon (L.) Pers., C. dactylon${\times}$C. transvallensis hybrids, Paspalum notatum Flugge., P. vaginatum Swartz., Stenotaphrum secundatum (Walt.) Kuntze, Eremochloa ophiuroides (Munro.) and Buchloe dactyloides (Nutt.) Engelm.] and 20 cool-season turfgrasses [Poa pratensis L., Festuca arundinacea Schreb., F. rubra L., F. rubra var. commutata Gaud., F. ovina var. duriuscula L. Koch. Agrostis tenuis Sibth., A. palustris Huds., and Latium perenne L.] were evaluated for host resistance to feeding by the Spodoptera depravata (Butler) in the laboratory. Two experiments were set up in the laboratory using 8.5cm diameter${\times}$4.0cm deep plastic petri dishes as larvae feeding chambers. In experiment 1, one neonate larvae were place on the grass in each dish and the dishes were arranged with 5 replicates each within an environmental chamber maintained at $25^{\circ}C$ and 15h light: 9h dark Larval survival and larval weights at 7d and 14d, pupal weights, and days to pupation were compared among turfgrasses. In Experiment 2, 4cm sections of all grasses were oriented equidistant from each other in a pattern resembling the spokes of a wheel. Five one neonate larvae were introduced to the center of each dish. Dishes were immediately placed in an environmental chamber held at $25^{\circ}C$, 15h light: 9h dark Larvae were allowed to feed for 24h. Damage was rated from 0(no damage) to 9(completely consumed) were made for eachturfgrass. Resistance as antibiosis (high mortality, slowed growth, and least preference) was identified in Z. japonica${\times}$Z. tenuifolia hybirids ‘Emerald’, Z. japonica${\times}$Z. metrella hybirds ‘Miyako’ and Eremochloa ophiuroides (Munro.). Cool-season turfgrasses tested were susceptible to feeding by Spodoptera depravata (Butler).

A Study on the Seasonal Color Characteristics of Warm- and Cool-Season Grasses II. Color Characteristics and Life-span of Leaves in Turfgrasses and Cover Plants+ (난지형 및 한지형 지피식물의 엽색변화에 관한 연구 II. 엽색특성 및 엽수명연장)

  • 심재성;민병훈;서병기
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.293-316
    • /
    • 1995
  • Nitrogen fertilization and cutting practice were studied on turfgrasses and cover plants to investigate the possibility of maintaining green color during the growing season. Research also involved the effect of the nitrogen on a few morphological characteristics of leaf performance elements which might give an information to coloration and life-span of turf leaves. Treatments in the first experiment undertaken on pot included one N level: 350kgN /ha applied as compound fertilizer in split applications of one-half in mid-May and the rest both in late June and August, and four spring-summer cuts: late May, late June, late July and late August. The soil filled in pot a moderately well-drained sandy loam. In the second experiment(field observation) leaf length and width, inflorescence and flowering, and color performance were also investigated. With nitrogen fertilizer applied on turfs, desirable turf color was maintained during a period of poor coloration in specific seasons such as mid-summer for cool season grasses and late fall for warm season grasses comparing to the non-treatment. However, this was not stimulated by cutting treatment to nitrogen status existed. Cutting effect on coloration was more remarkable in both Korean lawngrass and Manilagrass than in cool season turfgrasses such as Italian rye-grass, perennial ryegrass and tall fescue. Especially down-slide of leaf color in cool season turfgrasses could he detected in mid-summer /early fall season ranging up to mid-September. In early November as well as mid-September, Italian ryegrass, perennial ryegrass and tall fes-cue retained a high level of green color as followed by nitrogen application and cutting treatment, and little detectable variation of leaf color notation between cool season turfgrasses was obtained. However, Korean la'vngrass and Manilagrass failed to retain the green color until early November. Color notations in cool season turfgrasses investigated early November on the final date of the experiment ranged from 5 GY 3/1 to 4/8 in 'Ramultra' Italian ryegrass, 'Reveile' perennial ryegrass and 'Arid' tall fescue, but those in Zoysiagrasses were 7.5 YR 4/8 in Korean lawngrass and 2.5 y 5 /6 in Manilagrass. Life-span of leaves was shorter in Italian ryegrass, perennial ryegrass and tall fescue than in beth Korean lawngrass and Manilagrass with and without nitrogen application. In general, leaves appeared in early May had a long life-span than those appeared in late April or mid-June. Nitrogen application significantly prolonged the green color retaining period in perennial ryegrass, Italian ryegrass, Korean lawngrass and Manilagrass, and this was contrasted with the fact that there was no prolonged life-span of leaves emerging in early May and mid-June in tall fescue. SPAD reading values in 48 turfs and cover plants investigated in the field trial were increasing until late June and again decreasing till September. Increasing trends of reading value could be observed in the middle of October in most of grasses. On the other hand, clovers and reed canarygrasses did not restore their color values even in October. Color differences between inter-varieties, and inter-species occurred during the growing season under the field condition implicated that selection of species and /or cultivars for mixture should be taken into consideration. In Munsell color notation investigated in the final date in the middle of November, 32 cultivars belonged under the category of 5 GY and 10 cultivars under the category of 7.5 GY. This was implying that most of cool season turfs and cover plants grown in the center zone of Korean Peninsula which are able to utilize for landscape use can bear their reasonable green color by early or mid-November when properly managed. The applicable possibilities of SPAD readings and Munsell color notation to determine the color status of turfgrasses and cover plants used in this study were discussed.

  • PDF

Effects of Cool-Season Grass Overseeding on Coverage and Spring Transition in Zoysiagrass (들잔디에 오버씨딩 시 한지형 잔디의 피복율과 초종전이)

  • Jung, Ki-Wan;Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.370-377
    • /
    • 2014
  • Research was initiated to evaluate cool-season grass (CSG) overseeding effects on coverage and species transition in Korean lawngrass (Zoysia japonica Steud.) and to determine CSGs and their seeding rate for a practical overseeding. Treatments were comprised of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), tall fescue (TF, Festuca arundinacea Schreb.) and their mixtures. Significant differences were observed in turfgrass coverage and species transition. Since overseeding, the coverage was highest in PR, followed by TF and lowest in KB. The highest coverage in polystand was associated with Mixture IV (TF 50 + PR 50) at a seeding rate of $150gm^{-2}$ which had highest PR and TF, but without KB. Regarding turfgrass transition, zoysiagrass recovery continued to come back up to 80% from late March. But it reduced after early October. Zoysiagrass in monostand was greatest in KB and lowest in TF, but variable in polystand. For the fast and great coverage in winter, it would be the best to apply with PR at $100gm^{-2}$ and equal combination of PR and TF by 1/2 in the mixture at $150gm^{-2}$. For the smooth spring transition to zoysiagrass, however, KB application at $50gm^{-2}$ is recommended.

Effects of Capillary Water Interruption Layer on the Growth of Zoysiagrasses and Cool-season Turfgrasses in Reclaimed Land (염해지에서 모세관수 차단층 설치 유무에 따른 한국잔디 및 한지형 잔디류의 생육)

  • Kim, Jun-Beom;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • This study was carried out to examine the growth performance of 4 species of cool-season grasses and 4 species of zoysiagrasses under salt injury in Seo-san reclaimed area. Grasses were grown on the plots with capillary water interruption layer (WCWIL) and without capillary water interruption layer (WOCWIL) soil systems. Cool-season grass and seeding-type zoysiagrass plots were seeded on 6 Jun, 2006. Vegetative zoysiagrass 'Junggi' was established by sprigging and 'Senock' and 'Millock' were plugged. Electric conductivities of irrigation water (ECw) ranged from 0.28 to $3.3\;dS{\cdot}m^{-1}$. Electric conductivities (ECe) of the soil with capillary water interruption layer and without capillary water interruption layer ranged from 0.55 to $9.4\;dS{\cdot}m^{-1}$ and from 1.84 to $9.4\;dS{\cdot}m^{-1}$ respectively. Leaf color, turf quality, coverage rates, and growth rates were rated visually for 2 years. Zoysiagrass 'Junggi', creeping bentgrass, zoysiagrass 'Senock' and 'Millock' showed acceptable growth at salty fairway condition, while Kentucky bluegrass, perennial ryegrass, Kentucky bluegrass mixed with perennial ryegrass, and seeded zoysiagrass 'Zenith' showed establishment rates below 70%. These results will be useful when choosing turf grass species and cultivars for the golf courses in reclaimed land area.

Effect of Cool-season Grass Overseeding on Turf Quality, Green Period and Turf Density in Zoysiagrass Lawn (한국잔디에 한지형잔디 덧파종에 따른 잔디품질, 녹색기간 및 밀도에 미치는 영향)

  • Han, Sang-Wook;Soh, Ho-Sup;Choi, Byoung-Rourl;Won, Seon-Yi;Lee, Sang-Deok;Kang, Chang-Sung
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.333-344
    • /
    • 2017
  • This study was conducted to examine the effect of cool-season grass overseeding on the green period, turf quality and density in zoysiagrass lawn. Treatments were perennial ryegrass (PR) overseeding ($60g\;m^{-2}$) on medium-leaf type zoysiagrass, Kentucky bluegrass (KB) overseeding ($20g\;m^{-2}$) on medium-leaf type zoysiagrass and narrow-leaf type zoysiagrass, and no overseeding on medium-leaf type zoysiagrass. Overseeding of KB or PR effectively provided quality improvement of zoysiagrass lawn by extending green-period about one month in spring and two months in fall season. PR overseeding showed quick green cover within 2-3 weeks but decreased the quality of overseeded zoysiagrass lawn during the summer season. Whereas, KB overseeding showed slow green cover taking two to three month after seeding but provided stable and good turf quality throughout the years. KB or PR overseeding significantly increased the turf density of zoysiagrass lawn except the period of summer depression of PR. The ground coverage of cool-season grasses ranged from 30 to 80% with considerable seasonal variation. As a result, KB and PR have their strengths and weaknesses as an overseeding material. Thus, the use of KB and PR as a mixture would provide better overseeding performance in zoysiagrass lawn.