• Title/Summary/Keyword: convolutional autoencoder

Search Result 44, Processing Time 0.027 seconds

Classification of Alzheimer's Disease with Stacked Convolutional Autoencoder

  • Baydargil, Husnu Baris;Park, Jang Sik;Kang, Do Young
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.216-226
    • /
    • 2020
  • In this paper, a stacked convolutional autoencoder model is proposed in order to classify Alzheimer's disease with high accuracy in PET/CT images. The proposed model makes use of the latent space representation - which is also called the bottleneck, of the encoder-decoder architecture: The input image is sent through the pipeline and the encoder part, using stacked convolutional filters, extracts the most useful information. This information is in the bottleneck, which then uses Softmax classification operation to classify between Alzheimer's disease, Mild Cognitive Impairment, and Normal Control. Using the data from Dong-A University, the model performs classification in detecting Alzheimer's disease up to 98.54% accuracy.

Generation of Masked Face Image Using Deep Convolutional Autoencoder (컨볼루션 오토인코더를 이용한 마스크 착용 얼굴 이미지 생성)

  • Lee, Seung Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1136-1141
    • /
    • 2022
  • Researches of face recognition on masked faces have been increasingly important due to the COVID-19 pandemic. To realize a stable and practical recognition performance, large amount of facial image data should be acquired for the purpose of training. However, it is difficult for the researchers to obtain masked face images for each human subject. This paper proposes a novel method to synthesize a face image and a virtual mask pattern. In this method, a pair of masked face image and unmasked face image, that are from a single human subject, is fed into a convolutional autoencoder as training data. This allows learning the geometric relationship between face and mask. In the inference step, for a unseen face image, the learned convolutional autoencoder generates a synthetic face image with a mask pattern. The proposed method is able to rapidly generate realistic masked face images. Also, it could be practical when compared to methods which rely on facial feature point detection.

Comparison Analysis of Deep Learning-based Image Compression Approaches (딥 러닝 기반 이미지 압축 기법의 성능 비교 분석)

  • Yong-Hwan Lee;Heung-Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.129-133
    • /
    • 2023
  • Image compression is a fundamental technique in the field of digital image processing, which will help to decrease the storage space and to transmit the files efficiently. Recently many deep learning techniques have been proposed to promise results on image compression field. Since many image compression techniques have artifact problems, this paper has compared two deep learning approaches to verify their performance experimentally to solve the problems. One of the approaches is a deep autoencoder technique, and another is a deep convolutional neural network (CNN). For those results in the performance of peak signal-to-noise and root mean square error, this paper shows that deep autoencoder method has more advantages than deep CNN approach.

  • PDF

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • Noise generated during the acquisition and transmission of CT images acts as a factor that degrades image quality. Therefore, noise removal to solve this problem is an important preprocessing process in image processing. In this paper, we remove noise by using a deformable convolutional autoencoder (DeCAE) model in which deformable convolution operation is applied instead of the existing convolution operation in the convolutional autoencoder (CAE) model of deep learning. Here, the deformable convolution operation can extract features of an image in a more flexible area than the conventional convolution operation. The proposed DeCAE model has the same encoder-decoder structure as the existing CAE model, but the encoder is composed of deformable convolutional layers and the decoder is composed of conventional convolutional layers for efficient noise removal. To evaluate the performance of the DeCAE model proposed in this paper, experiments were conducted on CT images corrupted by various noises, that is, Gaussian noise, impulse noise, and Poisson noise. As a result of the performance experiment, the DeCAE model has more qualitative and quantitative measures than the traditional filters, that is, the Mean filter, Median filter, Bilateral filter and NL-means method, as well as the existing CAE models, that is, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) and SSIM. (Structural Similarity Index Measure) showed excellent results.

Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation (CAE 알고리즘을 이용한 레이더 강우 보정 평가)

  • Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.453-462
    • /
    • 2021
  • As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.

Surface Defect Detection System for Steel Products using Convolutional Autoencoder and Image Calculation Methods (합성곱 오토인코더 모델과 이미지 연산 기법을 활용한 가공품 표면 불량 검출 시스템)

  • Kim, Sukchoo;Kwon, Jung Jang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.69-70
    • /
    • 2021
  • 본 논문은 PPM으로 관리되고 있는 자동차 부품 제조 공정에서 검사자의 육안검사 방법을 대체하기 위해 머신비전 및 CNN 기반 불량 검출 시스템으로 제안되었던 방식들의 단점을 개선하기 위하여 기존 머신 비전 기술에 합성곱 오토인코더 모델을 적용하여 단점을 해결하였다. 본 논문에서 제시한 오토인코더를 이용하는 방법은 정상 생산품의 이미지만으로 학습을 진행하고, 학습된 모델은 불량 부위가 포함된 이미지를 입력받아 정상 이미지로 출력한다. 이 방법을 사용하여 불량의 부위와 크기를 알 수 있었으며 불량 여부의 판단은 임계치에 의한 불량 부위의 화소 수 계산으로 판단하였다.

  • PDF

Detection of Abnormal Vessel Trajectories with Convolutional Autoencoder (합성곱 오토인코더를 이용한 이상거동 선박 식별)

  • Son, June-Hyoung;Jang, Jun-Gun;Choi, Bongwan;Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.190-197
    • /
    • 2020
  • Recently there was an incident that military radars, coastal CCTVs and other surveillance equipment captured a small rubber boat smuggling a group of illegal immigrants into South Korea, but guards on duty failed to notice it until after they reached the shore and fled. After that, the detection of such vessels before it reach to the Korean shore has emerged as an important issue to be solved. In the fields of marine navigation, Automatic Identification System (AIS) is widely equipped in vessels, and the vessels incessantly transmits its position information. In this paper, we propose a method of automatically identifying abnormally behaving vessels with AIS using convolutional autoencoder (CAE). Vessel anomaly detection can be referred to as the process of detecting its trajectory that significantly deviated from the majority of the trajectories. In this method, the normal vessel trajectory is gridded as an image, and CAE are trained with images from historical normal vessel trajectories to reconstruct the input image. Features of normal trajectories are captured into weights in CAE. As a result, images of the trajectories of abnormal behaving vessels are poorly reconstructed and end up with large reconstruction errors. We show how correctly the model detects simulated abnormal trajectories shifted a few pixel from normal trajectories. Since the proposed model identifies abnormally behaving ships using actual AIS data, it is expected to contribute to the strengthening of security level when it is applied to various maritime surveillance systems.

Deep Learning based Raw Audio Signal Bandwidth Extension System (딥러닝 기반 음향 신호 대역 확장 시스템)

  • Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1122-1128
    • /
    • 2020
  • Bandwidth Extension refers to restoring and expanding a narrow band signal(NB) that is damaged or damaged in the encoding and decoding process due to the lack of channel capacity or the characteristics of the codec installed in the mobile communication device. It means converting to a wideband signal(WB). Bandwidth extension research mainly focuses on voice signals and converts high bands into frequency domains, such as SBR (Spectral Band Replication) and IGF (Intelligent Gap Filling), and restores disappeared or damaged high bands based on complex feature extraction processes. In this paper, we propose a model that outputs an bandwidth extended signal based on an autoencoder among deep learning models, using the residual connection of one-dimensional convolutional neural networks (CNN), the bandwidth is extended by inputting a time domain signal of a certain length without complicated pre-processing. In addition, it was confirmed that the damaged high band can be restored even by training on a dataset containing various types of sound sources including music that is not limited to the speech.

Stacked Sparse Autoencoder-DeepCNN Model Trained on CICIDS2017 Dataset for Network Intrusion Detection (네트워크 침입 탐지를 위해 CICIDS2017 데이터셋으로 학습한 Stacked Sparse Autoencoder-DeepCNN 모델)

  • Lee, Jong-Hwa;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.24 no.2
    • /
    • pp.24-34
    • /
    • 2021
  • Service providers using edge computing provide a high level of service. As a result, devices store important information in inner storage and have become a target of the latest cyberattacks, which are more difficult to detect. Although experts use a security system such as intrusion detection systems, the existing intrusion systems have low detection accuracy. Therefore, in this paper, we proposed a machine learning model for more accurate intrusion detections of devices in edge computing. The proposed model is a hybrid model that combines a stacked sparse autoencoder (SSAE) and a convolutional neural network (CNN) to extract important feature vectors from the input data using sparsity constraints. To find the optimal model, we compared and analyzed the performance as adjusting the sparsity coefficient of SSAE. As a result, the model showed the highest accuracy as a 96.9% using the sparsity constraints. Therefore, the model showed the highest performance when model trains only important features.