• Title/Summary/Keyword: convolution network

Search Result 530, Processing Time 0.025 seconds

Analysis of Network Chain using Dynamic Convolution Model (동적 확률 재규격화를 이용한 네트워크 연쇄 관계 해석)

  • Lee, Hyungjin;Kim, Taegon;Lee, JeongJae;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • Many classification studies for the community of densely-connected nodes are limited to the comprehensive analysis for detecting the communities in probabilistic networks with nodes and edge of the probabilistic distribution because of the difficulties of the probabilistic operation. This study aims to use convolution method for operating nodes and edge of probabilistic distribution. For the probabilistic hierarchy network with nodes and edges of the probabilistic distribution, the model of this study detects the communities of nodes to make the new probabilistic distribution with two distribution. The results of our model was verified through comparing with Monte-carlo Simulation and other community-detecting methods.

Crack detection based on ResNet with spatial attention

  • Yang, Qiaoning;Jiang, Si;Chen, Juan;Lin, Weiguo
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Deep Convolution neural network (DCNN) has been widely used in the healthy maintenance of civil infrastructure. Using DCNN to improve crack detection performance has attracted many researchers' attention. In this paper, a light-weight spatial attention network module is proposed to strengthen the representation capability of ResNet and improve the crack detection performance. It utilizes attention mechanism to strengthen the interested objects in global receptive field of ResNet convolution layers. Global average spatial information over all channels are used to construct an attention scalar. The scalar is combined with adaptive weighted sigmoid function to activate the output of each channel's feature maps. Salient objects in feature maps are refined by the attention scalar. The proposed spatial attention module is stacked in ResNet50 to detect crack. Experiments results show that the proposed module can got significant performance improvement in crack detection.

Individual Pig Detection using Fast Region-based Convolution Neural Network (고속 영역기반 컨볼루션 신경망을 이용한 개별 돼지의 탐지)

  • Choi, Jangmin;Lee, Jonguk;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.216-224
    • /
    • 2017
  • Abnormal situation caused by aggressive behavior of pigs adversely affects the growth of pigs, and comes with an economic loss in intensive pigsties. Therefore, IT-based video surveillance system is needed to monitor the abnormal situations in pigsty continuously in order to minimize the economic demage. Recently, some advances have been made in pig monitoring; however, detecting each pig is still challenging problem. In this paper, we propose a new color image-based monitoring system for the detection of the individual pig using a fast region-based convolution neural network with consideration of detecting touching pigs in a crowed pigsty. The experimental results with the color images obtained from a pig farm located in Sejong city illustrate the efficiency of the proposed method.

Convolution Neural Network for Malware Detection (합성곱 신경망(Convolution Neural Network)를 이용한 악성코드 탐지 방안 연구)

  • Choi, Sin-Hyung
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.166-168
    • /
    • 2018
  • 새롭게 변형되는 대규모 악성코드들을 신속하게 탐지하기 위하여 인공지능 딥러닝을 이용한 악성코드 탐지 기법을 제안한다. 대용량의 고차원 악성코드를 저차원의 이미지로 변환하고, 딥러닝 합성곱신경망(Convolution Neural Network)을 통해 이미지의 악성코드 패턴을 학습하고 분류하였다. 본 논문에서는 악성코드 분류 모델의 성능을 검증하기 위하여 악성코드 종류별 분류 실험과 악성코드와 정상코드 분류 실험을 실시하였고 각각 97.6%, 87%의 정확도로 악성코드를 구별해 내었다. 본 논문에서 제안한 악성코드 탐지 모델은 차원 축소를 통해 10,868개(200GB)의 대규모 데이터에 대하여 10분 이내의 학습시간이 소요되어 새로운 악성코드 학습 및 대용량 악성코드 탐지를 신속하게 처리 가능함을 보였다.

Glaucoma Detection of Fundus Images Using Convolution Neural Network (CNN을 이용한 안저 영상의 녹내장 검출)

  • Shin, B.S.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.636-638
    • /
    • 2022
  • This paper is a study to apply CNN(Convolution Neural Network) to fundus images for identifying glaucoma. Fundus images are evaluated in the field of medical diagnosis detection, which are diagnosing of blood vessels and nerve tissues, retina damage, various cardiovascular diseases and dementia. For the experiment, using normal image set and glaucoma image set, two types of image set are classifed by using AlexNet. The result performs that glaucoma with abnormalities are activated and characterized in feature map.

  • PDF

Detection and Localization of Image Tampering using Deep Residual UNET with Stacked Dilated Convolution

  • Aminu, Ali Ahmad;Agwu, Nwojo Nnanna;Steve, Adeshina
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.203-211
    • /
    • 2021
  • Image tampering detection and localization have become an active area of research in the field of digital image forensics in recent times. This is due to the widespread of malicious image tampering. This study presents a new method for image tampering detection and localization that combines the advantages of dilated convolution, residual network, and UNET Architecture. Using the UNET architecture as a backbone, we built the proposed network from two kinds of residual units, one for the encoder path and the other for the decoder path. The residual units help to speed up the training process and facilitate information propagation between the lower layers and the higher layers which are often difficult to train. To capture global image tampering artifacts and reduce the computational burden of the proposed method, we enlarge the receptive field size of the convolutional kernels by adopting dilated convolutions in the residual units used in building the proposed network. In contrast to existing deep learning methods, having a large number of layers, many network parameters, and often difficult to train, the proposed method can achieve excellent performance with a fewer number of parameters and less computational cost. To test the performance of the proposed method, we evaluate its performance in the context of four benchmark image forensics datasets. Experimental results show that the proposed method outperforms existing methods and could be potentially used to enhance image tampering detection and localization.

Satellite Building Segmentation using Deformable Convolution and Knowledge Distillation (변형 가능한 컨볼루션 네트워크와 지식증류 기반 위성 영상 빌딩 분할)

  • Choi, Keunhoon;Lee, Eungbean;Choi, Byungin;Lee, Tae-Young;Ahn, JongSik;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.895-902
    • /
    • 2022
  • Building segmentation using satellite imagery such as EO (Electro-Optical) and SAR (Synthetic-Aperture Radar) images are widely used due to their various uses. EO images have the advantage of having color information, and they are noise-free. In contrast, SAR images can identify the physical characteristics and geometrical information that the EO image cannot capture. This paper proposes a learning framework for efficient building segmentation that consists of a teacher-student-based privileged knowledge distillation and deformable convolution block. The teacher network utilizes EO and SAR images simultaneously to produce richer features and provide them to the student network, while the student network only uses EO images. To do this, we present objective functions that consist of Kullback-Leibler divergence loss and knowledge distillation loss. Furthermore, we introduce deformable convolution to avoid pixel-level noise and efficiently capture hard samples such as small and thin buildings at the global level. Experimental result shows that our method outperforms other methods and efficiently captures complex samples such as a small or narrow building. Moreover, Since our method can be applied to various methods.

Parallel-Addition Convolution Algorithm in Grayscale Image (그레이스케일 영상의 병렬가산 컨볼루션 알고리즘)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.288-294
    • /
    • 2017
  • Recently, deep learning using convolutional neural network (CNN) has been extensively studied in image recognition. Convolution consists of addition and multiplication. Multiplication is computationally expensive in hardware implementation, relative to addition. It is also important factor limiting a chip design in an embedded deep learning system. In this paper, I propose a parallel-addition processing algorithm that converts grayscale images to the superposition of binary images and performs convolution only with addition. It is confirmed that the convolution can be performed by a parallel-addition method capable of reducing the processing time in experiment for verifying the availability of proposed algorithm.

Deep Learning Algorithm to Identify Cancer Pictures (딥러닝 기반 암세포 사진 분류 알고리즘)

  • Seo, Young-Min;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.669-681
    • /
    • 2018
  • CNN (Convolution Neural Network) is one of the most important techniques to identify the kind of objects in the captured pictures. Whereas the conventional models have been used for low resolution images, the technique to recognize the high resolution images becomes crucial in the field of artificial intelligence. In this paper, we proposed an efficient CNN model based on dilated convolution and thresholding techniques to increase the recognition ratio and to decrease the computational complexity. The simulation results show that the proposed algorithm outperforms the conventional method and the thresholding technique enhances the performance of the proposed model.

Deep Learning Based Gray Image Generation from 3D LiDAR Reflection Intensity (딥러닝 기반 3차원 라이다의 반사율 세기 신호를 이용한 흑백 영상 생성 기법)

  • Kim, Hyun-Koo;Yoo, Kook-Yeol;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a method of generating a 2D gray image from LiDAR 3D reflection intensity. The proposed method uses the Fully Convolutional Network (FCN) to generate the gray image from 2D reflection intensity which is projected from LiDAR 3D intensity. Both encoder and decoder of FCN are configured with several convolution blocks in the symmetric fashion. Each convolution block consists of a convolution layer with $3{\times}3$ filter, batch normalization layer and activation function. The performance of the proposed method architecture is empirically evaluated by varying depths of convolution blocks. The well-known KITTI data set for various scenarios is used for training and performance evaluation. The simulation results show that the proposed method produces the improvements of 8.56 dB in peak signal-to-noise ratio and 0.33 in structural similarity index measure compared with conventional interpolation methods such as inverse distance weighted and nearest neighbor. The proposed method can be possibly used as an assistance tool in the night-time driving system for autonomous vehicles.