• Title/Summary/Keyword: converters

Search Result 1,812, Processing Time 0.026 seconds

Development of Diagnosis System of Mold Oscillation in a Continuous Slab Casting Machine (연속 주조기의 주형 진동 진단 시스템의 개발)

  • Choi, Jae-Chan;Lee, Sung-Jin;Cho, Kang-Hyeong;Jun, Hyeong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.84-94
    • /
    • 1996
  • In order to prevent shell sticking by providing sufficient lubrication between the strand and the mold, the mold oscillation has been used. Now it is well known that the shape of the oscillation curve has a decisive effect on the surface quality of the cast product. Besides, oscillation parameters such as stroke and frequency are also very important. In order to guarantee that parameters which have been found to be optimal for a certain grade of steel do not change with time, periodical checks of the physical condition of the whole equipment are necessary. The portable mold oscillation analyzer with integrated computer, developed by POSCO, records the movement of the mold in every spatial direction. The system uses the gap sensors to measure the mold movement (displacement ) in the two horizontal directions according to the mold narrow and broad faces and the vertical strokes in the four corners of mold. The gap sensor is a non-contacting minute displacement measuring device using the principle of high frequency eddy current loss. The mold oscillation diagnosis system integrates the gap sensors, their converters and the industrial portable computer with plug-in data acquisition boards. The all programs, such as the fast Fourier transformation module (amplitude and phase spectrums) and harmonic analysis module, was coded by LabVIEW$^{TM}$ software as the graphical language. In an own 'expert module' which is included in the diagnosis program, one can obtain much information about the mold oscillation equipment.

  • PDF

Reduce Power of Magnetic Contactor using the Two-Level Apply Voltage (Two-Level 전압 인가에 의한 전자접촉기 구동 전력 저감)

  • Kang-Yeol Lee;Hye-Young Na;Seong-Mi Park;Sung-Jun Park;Gyoung-Jong Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.925-936
    • /
    • 2023
  • Currently, due to the rapid increase in power demand and the increase in capacity of power converters, the capacity of electromagnetic contactors is also increasing, and the burden on SMPS for the power that can drive them is increasing. Although the initial starting operation current of an electromagnetic contactor is significantly larger than the holding current for maintaining contact, most electromagnetic contactors apply the same voltage as the initial starting operation. An electromagnetic contactor must continuously apply a holding current to maintain the contact point, and the larger the capacity, the larger the current must be applied. This paper proposes a two-level magnetic contactor drive that allows setting the initial starting operation current to fully attach the contact point of the magnetic contactor and the holding current to maintain subsequent operation. In addition, a low-cost drive topology of analog and digital methods was proposed for various field applications, and an algorithm based on the ripple of the excitation current was proposed to determine whether the magnetic contactor was opened or closed without using a separate contact point. The feasibility of the proposed method was proven through Psim simulation experiments.

Experiments of Free-Space Optical Communication for Optical Ground Station (광통신 지상국 구축을 위한 자유공간 광통신 실험)

  • Taewoo Kim;Wonseok Kang;Sang Hoon Oh;Yong-sun Park;Jung-Hoon Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.74-85
    • /
    • 2024
  • As the limitations of conventional radio communications between satellites and the ground become apparent, various experiments are being conducted around the world to overcome them with space laser communication. In this study, we address the development of our own optical communications terminal (OCT) and optical ground station (OGS) and the experiments of free-space optical communication (FSOC) using them. Using a 30 mm-diameter OCT and a 250 mm-diameter portable OGS telescope, as well as commercial 10 Gbps SFP+ modules and media converters, we successfully transmitted and received 4K high-definition multimedia interface (HDMI) signals through 1,550 nm optical laser beam. The transmission and reception distances of the experiment were 3, 9, and 20 km, respectively, and the received signal strength at each distance was +6.1, -2.8, and -10.9 dBm, respectively. It was demonstrated that the 4K HDMI video lasted for over 10 minutes.

Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System (요요 진동시스템을 이용한 가동물체형 파력 발전 시스템의 기계-전기 통합해석 모델링 및 성능 해석)

  • Sim, Kyuho;Park, Jisu;Jang, Seon-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

Design of a High-Resolution Integrating Sigma-Delta ADC for Battery Capacity Measurement (배터리 용량측정을 위한 고해상도 Integrating Sigma-Delta ADC 설계)

  • Park, Chul-Kyu;Jang, Ki-Chang;Woo, Sun-Sik;Choi, Joong-Ho
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • Recently, with mobile devices increasing, as a variety of multimedia functions are needed, battery life is decreased. Accordingly the methods for extending the battery life has been proposed. In order to implement these methods, we have to know exactly the status of the battery, so we need a high resolution analog to digital converter(ADC). In case of the existing integrating sigma-delta ADC, it have not convert reset-time conversion cycle to function of resolution. Because of this reason, all digital values corresponding to the all number of bits will not be able to be expressed. To compensated this drawback, this paper propose that all digital values corresponding to the number of bits can be expressed without having to convert reset-time additional conversion cycle to function of resolution by using a up-down counter. The proposed circuit achieves improved SNDR compared to conventional converters simulation result. Also, this was designed for low power suitable for battery management systems and fabricated in 0.35um process.

Design of a step-up DC-DC Converter using a 0.18 um CMOS Process (0.18 um CMOS 공정을 이용한 승압형 DC-DC 컨버터 설계)

  • Lee, Ja-kyeong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.715-720
    • /
    • 2016
  • This paper proposes a PWM (Pulse Width Modulation) voltage mode DC-DC step-up converter for portable devices. The converter, which is operated with a 1 MHz switching frequency, is capable of reducing the mounting area of passive devices, such as inductor and capacitor, and is suitable for compact mobile products. This step-up converter consists of a power stage and a control block. The circuit elements of the power stage are an inductor, output capacitor, MOS transistors Meanwhile, control block consist of OPAMP (operational amplifier), BGR (band gap reference), soft-start, hysteresis comparator, and non-overlap driver and some protection circuits (OVP, TSD, UVLO). The hysteresis comparator and non-overlapping drivers reduce the output ripple and the effects of noise to improve safety. The proposed step-up converter was designed and verified in Magnachip/Hynix 0.18um 1-poly, 6-metal CMOS process technology. The output voltage was 5 V with a 3.3 V input voltage, output current of 100 mA, output ripple less than 1% of the output voltage, and a switching frequency of 1 MHz. These designed DC-DC step-up converters could be applied to the Personal Digital Assistants(PDA), cellular Phones, Laptop Computer, etc.

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF

Recycling Industry of Urban Mines by Applying Non-Ferrous Metallurgical Processes in Japan (비철제련(非鐵製鍊) 프로세스를 이용한 일본(日本)의 도시광산(都市鑛山) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.12-27
    • /
    • 2011
  • DOWA group has been working on metal recycling applying the smelting and refining process of KOSAKA Smelter. DOWA has developed it's metal recycling technologies through the treatment of black ore(complex sulfide ores) that contain many kinds of non-ferrous metals. In addition to these special technologies, DOWA has strengthened its hydrometallurgical process of precious metals and ability to deal with low-grade materials such as used electrical appliances or vehicles. On the other hand, JX Nippon Mining & Metals Corporation(JX-NMMC) carries out its metal recycling and industrial waste treatment businesses employing advanced separation, extraction and refining technologies developed through its extensive experience in the smelting of non-ferrous metals. JX-NMMC collects approximately 100,000t/y of copper and precious metal scraps from waste sources such as electronic parts, mobile phones, catalytic converters, print circuit boards and gold plated parts. These items are recycled through the smelting and refining operations of Saganoseki smelter and Hitachi Metal-recycling complex(HMC). In this like, metal recycling industries combined with environmental business service in Japan have been developed through excellent technologies for mineral processing and non-ferrous smelting. Also, both group, Dowa and JX-NMMC, were contributed to establish Japan's recycling-oriented society as the typical leading company of non-ferrous smelting. Now. it is an important issue to set up the collection system for e-waste.

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.

Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation (파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계)

  • Kim, Kyong-Hwan;Lee, Kangsu;Sohn, Jung Min;Park, Sewan;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.223-232
    • /
    • 2015
  • The present paper considers the conceptual design of floating wave-offshore wind hybrid power generation system. The worldwide demand for ocean renewable energy is increasing rapidly. Wave and offshore wind energy have been attractive among the various ocean renewable energy sources, and the site to generate electricity from wave and offshore wind accords well together. This means that a hybrid power generation system, which uses wave and offshore wind energy simultaneously has many advantages and several systems have been already developed in Western Europe. A R&D project for a 10 MW class floating wave-offshore wind hybrid power generation system has been also launched in Korea. A semi-submersible platform, which has four vertical columns at each corner of the platform to be connected with horizontal pontoons, was designed for this system considering arrangements of multiple wind turbines and wave energy converters. A mooring system and power cable were also designed based on the metocean data of installation site. In the present paper, those results are presented, and the difficulties and design method in the design of hybrid power generation system are presented.