• Title/Summary/Keyword: conventional water treatment

Search Result 567, Processing Time 0.032 seconds

The Effect of Hydrolysis Pre-Treatment by Flavourzyme on Meat Quality, Antioxidative Profiles, and Taste-Related Compounds in Samgyetang Breast Supplemented with Black Garlic

  • Barido, Farouq Heidar;Kim, Hee Ju;Kang, Sun Moon;Jang, Aera;Pak, Jae In;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.625-638
    • /
    • 2022
  • This study aimed to carefully investigate the effect of hydrolysis using Flavourzyme on meat quality, antioxidative status, and taste-related compounds in breast of Samgyetang that was supplemented with black garlic (BG). Four different treatment groups were compared: (1) conventional Samgyetang (control), (2) Samgyetang hydrolyzed with Flavourzyme (1%, v/w) (FS), (3) Samgyetang made with the BG extract without hydrolysis (NBG), and (4) BG samgyetang pre-treated with Flavourzyme (1%, v/w) in a water bath at 55℃ for 2.5 h and hydrolyzed before being processed (HBG). All the treatment groups were cooked by retorting at conditions 121℃ and 1.5 kg/cm2 for 1 h. Improved umami profiles through the increase of umami-related nucleotides (5c-GMP, 5'-IMP) and free amino acids-aspartic acid and glumtamic acid, in Samgyetang breast was recorded following hydrolysis. The HBG group tended to impart stronger scavenging activity toward free radicals compared with the other two groups, while not differing with NBG group regarding suppressing malondialdehyde. Textural properties were improved through hydrolysis, wherein the shear force value decreased from 2.29 kgf in the control to 1.19 and 1.25 kgf in the FS and HBG group. Moisture percentages were highly retained, with the redness score increasing and the lightness color decreasing following hydrolysis. In conclusion, the results of this study can be a preliminary information of the effect of hydrolysis pre-treatment for BG samgyetang. Further experiments are required to compare various enzymes along with its organoleptic acceptances.

A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation (광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究))

  • Lee, Sang Hyup;Park, Ju Seok;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

Evaluation of energy consumption of gas hydrate and reverse osmosis hybrid system for seawater desalination (해수담수화 공정을 위한 가스하이드레이트-역삼투 공정의 에너지 소모량 평가)

  • Ryu, Hyunwook;Kim, Minseok;Lim, Jun-Heok;Kim, Joung Ha;Lee, Ju Dong;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.459-469
    • /
    • 2016
  • Gas hydrate desalination process is based on a liquid to solid (Gas Hydrate, GH) phase change followed by a physical process to separate the GH from the remaining salty water. The GH based desalination process show 60.5-90% of salt rejection, post treatment like reverse osmosis (RO) process is needed to finally meet the product water quality. In this study, the energy consumption of the GH and RO hybrid system was investigated. The energy consumption of the GH process is based on the cooling and heating of seawater and the heat of GH formation reaction while RO energy consumption is calculated using the product of pressure and flow rate of high pressure pumps used in the process. The relation between minimum energy consumption of RO process and RO recovery depending on GH salt rejection, and (2) energy consumption of electric based GH process can be calculated from the simulation. As a result, energy consumption of GH-RO hybrid system and conventional seawater RO process (with/without enregy recovery device) is compared. Since the energy consumption of GH process is too high, other solution used seawater heat and heat exchanger instead of electric energy is suggested.

Removal of Ammonia in Water using Acid-impregnated Activated Carbon and Dynamic Membrane System (산 첨착활성탄과 동적막 공정을 이용한 수중 암모니아 제거)

  • Choi, Won Kyung;Shin, Dong-Ho;Lee, Yong Taek
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2006
  • In this study, activated carbon in a powder form was used to remove dissolved ammonia which causes a fouling smell in water. Since the adsorption capacity of common powder activated carbon is not high enough, we prepared powder activated carbon deposited on an acid solution to enhance the adsorption capacity. The acid-impregnated activated carbon was applied on the surface of porous fibril support ($10{\sim}50{\mu}m$) by which adsorption and separation processes take place simultaneously by varying effective pressure. As the result, the ammonia removal efficiency is above 60% in the mixing process which is 10~15% higher than general powder activated carbon. From the result of an experiment on the pure permeable test of a dynamic membrane, its transmittance is 400~700 LMH (liter per hour), indicating that the prepared membrane works as a microfiltration membrane. Therefore, it is expected that the membrane prepared in this way would improve the efficiency of water treatment than conventional membranes.

A Study on the high-flux MBR system using PTFE flat membrane and coagulant(Alum) for removal of phosphorus (PTFE재질의 평판형 분리막과 인제거를 위해 Alum주입을 적용한 고플럭스 MBR시스템에 관한 연구)

  • Lee, Eui-Jong;Kim, Kwan-Yeop;Kwon, Jin-Sub;Kim, Young-Hoon;Lee, Yong-Soo;Lee, Chang-Ha;Jeon, Min-Jung;Kim, Hyung-Soo;Kim, Jung-Rae;Jung, Jin-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.95-106
    • /
    • 2011
  • Even though MBR processes have many advantages such as high quality effluents, a small footprint and convenience for operation compared to conventional activated sludge processes, there are some shortcomings in terms of the cost and potential fouling incident that keeps MBR (Membrane bioreactor) processes from being widely applied. To reduce these problems, PTFE (Polytetrafluoroethylene) flat sheet membranes that have excellent permeability and durability were tested instead of PVDF (Polyvinylidene fluoride) membrane which is being used widely in water treatment. Low concentration of sodium hydroxide (NaOH) was also added into the membrane modules in order to prevent the membrane fouling as well as to provide the alkalinity. With conditions mentioned above, a pilot-scale MBR system based on the MLE (Modified Ludzack Ettinger) process was operated at flux of 40 $L/m^{2}/hr$ and over 15,000 mg/L MLSS concentration for about 8 months. And coagulant(alum) was added into the membrane tank to remove phosphorus. Although the more coagulant is added the more effectively phosphorus is removed, that can lead to fouling for a long operation(Ronseca et al.,2009). By the way there is a research that fouling grow up after stopping injection of coagulant(Holbrook, 2004). Stable operation of MBR systems was achieved without major chemical cleaning and the effluent quality was found to be good enough to comply with the treated waste water quality regulations of the Korea.

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

Enhancement of Coagulation and Flocculation Efficiencies by Ultrasonic Chemical Spray Nozzle I (초음파 약품분사노즐을 이용한 응집효율 향상 I)

  • Kim, Jin-Kook;Cho, Soon-Haing;Ha, Dong-Yun;Koh, Jae-Seok;Kim, Yong-Hyun;Choi, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • To establish low-cost and high efficiency water treatment process, feasibility of applying ultrasonic spray nozzle for chemical injection was evaluated. Ultrasonic spray nozzle was manufactured using piezoelectric ceramics. Treatment efficiencies of contaminants by ultrasonic spray nozzle were compared with conventional chemical mixing such as back-mixing. It was found out that the rate of chemical diffusion rate by ultrasonic spray nozzle was faster than by back-mixing method. Removal efficiencies of various contaminants, such as turbidity, organics and microorganism by ultrasonic spray nozzle were also higher than by back-mixing method. By adapting ultrasonic spray nozzle in coagulant injection process, it can be prevented that the decline of treatment efficiency by coagulant overdose. The amount of coagulant can be reduced by applying ultrasonic spray nozzle in water treatment. Along with these advantages chemical mixing chamber is not required if ultrasonic spray nozzle is adapted. From these results, it can be concluded that chemical injection by ultrasonic spray nozzle is an economical and highly efficient device for coagulant mixing.

Effect of Ozone Concentration on AOP Efficiency of Secondary Effluent from Pig Slurry Purification System (오존 접촉농도가 양돈슬러리 2차 처리수의 고도처리 효율에 미치는 영향)

  • Jeong, K.H.;Jeon, S.K.;Ryu, S.H.;Kim, J.H.;Kwag, J.H.;Ann, H.K.;Jeong, M.S.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With an increasing livestock population, animal manure production has been steadily increasing in Korea. This trend has forced farmers to spend more money for animal manure treatment in their farm. Therefore, research utilizing animal manure as a renewable resources has become increasingly important. The purpose of this study was to develop a stable advanced wastewater treatment system can be applied to conventional animal wastewater treatment processes and evaluate its contribution to reduce effluent discharge volume by recycling as flushing water. AOP (advanced oxidation process) process improved wastewater treatment efficiency in terms of color, suspended solids (SS) and chemical oxygen demand (COD). Due to the addition of Hydrogen peroxide ($H_2O_2$), pathogens, Salmonella and E. coli, reduction was accomplished. To enhance ozone treatment effect, three levels of ozone test on secondary effluent of pig slurry purification system were conducted. At the level of 5 g/hr, 6.7 g/hr and 8.4 g/hr color of secondary effluent of pig slurry purification system were decreased from 2,433 to 2,199, 2,433 to 1,980 and 2,433 to 243, respectively.

Investigation on Water Purification Effect Through Long-Term Continuous Flow Test of Porous Concrete Using Effective Microorganisms (유용미생물을 이용한 포러스 콘크리트의 장기간 연속흐름 실험을 통한 수질정화 효과 검토)

  • Park, Jun-Seok;Kim, Bong-Kyun;Kim, Woo-Suk;Seo, Dae-Sok;Kim, Wha-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.219-227
    • /
    • 2014
  • The purpose of this study is to investigate water purification properties of porous concrete by using effective microorganisms through the long-term continuous flow test. To solve the problems such as desorption of conventional microorganisms, in this study, tertiary treatment of the effective microorganisms identified by 16S rDNA sequence analysis was adopted per each step in the manufacturing process of porous concrete. And concentration for optimum continuous flow test and operation conditions through basic experiments according to retention time were investigated. Based on the experimental results, the porous concrete applying effective microorganisms showed no toxicity on the biological water quality and exhibited excellent removal efficiency than normal porous concrete. Therefore, contaminated water quality would be improved by treatment performance investigation of contaminants through long-term continuous flow test. If problems are complemented during the experiment process, it is expected to be able to reduce the non-point pollution sources flowing into river.

A Study on the Diatomaceous Earth Filtration of Settling Basin Effluent (정수장 침전지 유출수의 규조토 여과에 관한 연구)

  • Shin Dae-Yewn;Ji Sung-Nam;Moon Ok-Ran;Kim Ji-Yeong;Suh Dong-Woo;Cho Young-Kwan
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.410-416
    • /
    • 2004
  • The objective of this investigation was to evaluate applicability of precoat filtration that can be substituted for rapid sand filter of conventional water treatment system(CWTS). Precoat filter used in this experiment are candle filter. Element disk of candle are pore size $10{\mu}m(R),\;20{\mu}m(B)$ And diatomaceous earth are cake pore size $3.5{\mu}m$(Standard Super- Cel; A), $7{\mu}m$(Hyflo Super-Cel; B) and $17{\mu}m$(Celite 545RV; C). $2kg/m^2$ diatomaceous earth is used for precoating, it coated candle in $5{\sim}6mm$ thickness. 1. Al adsorption dosages by diatomaceous earth used in experimental we Hyflo Super-Cel 0.843mg/g, Standard Super-Cel 0.782 mg/g and Celite 545RV 0.766 mg/g. 2. Filtrate of precoat filter during 60min are R-C combination 20.7($m^3/m^2$)>B-C 18.3($m^3/m^2$)>B-B 15.0($m^3/m^2$)> R-B 12.9($m^3/m^2$)> R-A 11,093($l/m^2$). 3. Water quality of precoat filter effluent are thus. $KMnO_4$ consumption are $1.10{\sim}2.20mg/l$, removal rate are $30.9{\sim}65.6\%$. They are R-A 1.10(mg/l)(removal rate $65.6\%$). R-C(2.20 mg/l)(removal rate $30.9\%$). 4. $Al^{3+}$ are not detected with all combination, removal rate $100\%$. 5. Considering water quality and flux, continued running time of R-A combination is 7 hr. Accumulated filtrate are $74.4 m^3/m^2$, average flux is $177.2 l/m^2{\cdot}min$. And filtrate per diatomaceous earth 1g are 37.2 l. 6. R-A effluent's water quality are $KMnO_4$ Consumption 1.10(mg/l), DOC 1.161 mg/1, Al 0.0 mg/1, $UV_{254}$ 0.016/cm, Turbidity 0.1(NTU). R-A combination is suitable to precoat filtration for the settling basin effluent treatment.