• 제목/요약/키워드: conventional water treatment

검색결과 567건 처리시간 0.022초

Membrane Technology for Water Treatment in Korea

  • Yoo, Je-Kang;Lee, Kyu-hyun
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 한국막학회 1995년도 추계 총회 및 학술발표회
    • /
    • pp.94-100
    • /
    • 1995
  • In recent years it has become necessary to design water management system to minimize water consumption as well as satisfy more stringent environmental requirements. This is mainly due to the seasonal water shortage and environmental problems on water pollution that have taken place at many industrialized regions in Korea. Accordingly, membrane technology in Korea is finding increasing application in the water industry because it has been found to be effective and economic treatment method compared with conventional technology. The membrane processes with the greatest potential for water and wastewater treatment are microfiltration(MF), ultrafiltration(UF), nanofiltration(NF) and reverse osmosis (RO), which utilize pressure differentials.

  • PDF

Effluents from copper industry: Improvised techniques

  • Duraisamy, Sankar;Saminathan, Rajagopal;Narsimman, Deepa
    • Membrane and Water Treatment
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 2015
  • In India, recycling of treated effluent plays a major role in the industry. Particularly in copper industry, recycling techniques for treated effluents adopt conventional technologies which are not energy efficient and recovery of high quality process water, free flowing salts and sludge's is very low. This paper presents an overview of enhanced modern technology for treated effluents in copper industry making it more efficient with high recovery of high quality process water and free flowing salts. Life cycle cost (LCC) would be 15-20% lower than the conventional technologies. The conventional technology can be replaced with this proposed technique in the existing and upcoming copper industries.

An Application of the NPR Process for the Treatability Improvement of an Existing Sewage Treatment Plant (기존 하수처리장 성능개선을 위한 NPR공정의 적용)

  • Moon, Tae Hoon;Ko, Kwang Baik;Song, Eui Yeol
    • Journal of Korean Society on Water Environment
    • /
    • 제23권5호
    • /
    • pp.756-760
    • /
    • 2007
  • Most of the sewage treatment plants in Korea are being operated by using the conventional activated sludge process. Recently, as the water criteria have been strict with regard to such main culprits of eutrophication, the existing sewage treatment plants are obliged to upgrade their treatment technology to meet the criteria. Under such circumstances, this study was aimed at analyzing the conditions of an existing sewage treatment plants in Korea, and thereupon, test its treatment performance for the actual sewage water by operating a pilot plant. When the pilot plant was operated with the NPR process at the capacity of $30m^3/day$, the average contents of BOD, $COD_{Mn}$, SS, T-N and T-P in the effluents were 7.0 mg/L, 9.7 mg/L, 5.1 mg/L, 8.0 mg/L and 0.23 mg/L, respectively, which were very stable in general. Accordingly, if the NPR process used for this pilot plant to upgrade the treatment technology for the sewage treatment plat could be adopted, the effluent water quality criteria effective beginning from 2008 would be met.

Evaluation on Removal Efficiency of Cryptosporidium using Surrogate in Pilot Plant of Conventional Water Treatment Process (표준정수처리 파일럿에서 Cryptosporidium 유사체를 이용한 Cryptosporidium 제거효율 평가)

  • Park, Sangjung;Chung, Hyenmi;Choi, Heejin;Jun, Yongsung;Kim, Jongmin;Kim, Taeseung;Chung, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • 제26권3호
    • /
    • pp.399-405
    • /
    • 2010
  • In order to quantify removal efficiency of Cryptosporidium in water treatment process and evaluate factors influencing removal efficiency of Cryptosporidium in each step of water treatment process, large pilot plant system ($100m^3/day$) and Cryptracer, surrogate of Cryptosporidium, were used. The removal efficiency of Cryptracer was around 0.8~1 log in coagulation process and 3.3~4.8 log in sand filtration process under ordinary environmental conditions. Factors influenced removal efficiency of Cryptracer were high fluctuate turbidity and water temperature. High fluctuate turbidity made difficult to adjust optimum PAC concentration, caused to drop removal efficiency of coagulation process (0.5 log). Inadequate coagulation process influenced to sand filtration process (2.1 log), caused to decline of removal efficiency in the whole process (2.6 log). Low temperature below $2^{\circ}C$ also influenced coagulation process (0.6 log). Therefore, It is shown that careful attention in the control of Cryptosporidium is needed in flood period, when high fluctuate turbidity would be, and winter period of low temperature.

Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment Processes (기존수처리 공정 및 고도정수처리 공정에서 NOM의 분자크기 분포 변화)

  • Choi, Il-Hwan;Jung, Yu-Jin
    • Journal of Korean Society on Water Environment
    • /
    • 제24권6호
    • /
    • pp.682-689
    • /
    • 2008
  • The purpose of this study was to find out the variation between molecular size distribution (MSD) of natural organic matter (NOM) in raw waters after different water treatment processes like conventional process (coagulation, flocculation, filtration) followed by advanced oxidation process (ozonation, GAC adsorption). The MSD of NOM of Suji pilot plant were determined by Liquid Chromatography-Organic Carbon Detection (LC-OCD) which is a kine of high-performance size-exclusion chromatography (HPSEC) with nondispersive infrared (NDIR) detector and $UV_{254}$ detector. Five distinct fractions were generally separated from water samples with the Toyopearl HW-50S column, using 28 mmol phosphate buffer at pH 6.58 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface water. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. No more distinct variation of MSD was observed by ozone process after sand filtration but the SUVA value were obviously reduced during increase of the ozone doses. UVD results and HS-Diagram demonstrate that ozone induce not the variation of molecular size of humic substance but change the bond structure from aromatic rings or double bonds to single bond. Granular activated carbon (GAC) filtration removed 8~9% of organic compounds and showed better adsorption property for small MSD than large one.

Removal Characteristics of Natural Organic Matter and Taste and Odor by Advanced Water Treatment Process around the Han River Water Supply System (한강수계 고도정수처리 공정에서의 유기물과 맛·냄새의 제거특성)

  • Jae-Lim Lim;Lee, Kyung-Hyuk;Kim, Seong-Su;Chae, Seon-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제21권1호
    • /
    • pp.13-25
    • /
    • 2007
  • The water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation(KOWACO)'s management, take water from Paldang Reservoir in Han River System for drinking water supply. There are taste and odor (T&O) problems in the finished water because the conventional treatment processes do not effectively remove the T&O compounds. As part of countermeasures for taste and odor control, KOWACO is planning to introduce advanced water treatment process such as ozone and GAC in near future. This study evaluated the removal characteristics of T&O and dissolved organic matter (DOM) to find design and operation parameters of advanced water treatment processes in a pilot-scale treatment plant. The GAC adsorption capacity for DOC in the two GAC system (GAC and $O_3$-GAC) at an EBCT of 14min was mostly exhausted after 9months. The differency of the removal efficiency of DOC between $O_3$-GAC and GAC increased with increasing operation time because the bioactivity in $O_3$-GAC process was enhanced by post-ozone process. Removal by conventional treatment was unable to reach the target TON(threshold odor number) of 3 but GAC systems at an EBCT(empty bed contact time) of 14 min were able to archive the target with few exception. During the high T&O episodes, PAC as a pretreatment together with GAC could be useful option for T&O control. However, substantial TON removal continued for more than two year (> 90,000 bed volumes). At the spiking of less concentration 26 to 61 ng/L in the influent of GAC systems, GAC absorber and $O_3$-GAC processes could meet the treatment target. The better spike control after 12 and 19 months of operation compared to that after 7 months of operation is a strong indication of biological control. The results presented in this study had shown that $O_3$-GAC process was found to be more effective for T&O control than GAC process. And the main removal mechanism in GAC systems were adsorption capacity and biodegradation.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • 제19권11호
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

Emulsified Oily Wastewater Treatment by MHD Water Treatment Device (MHD 수처리방식에 의한 에멀젼오일폐수의 처리)

  • 김인수;박승조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.20-27
    • /
    • 1993
  • Emulsified oily wastewater is generally hard to treat in separating oil and water by conventional separators. In this paper the magnetohydrodynamic water treatment device was used to separate oil from emulsified oily wastewater which contained high conductivity. The emulsified oil removal rates and economic ranges of oil separation at various factors were investigated to confirm the influence of the magnetic field in MHD water treatment device according to the characteristics of emulsion brake. Experimental results proved that the oil removal rates were proportional to Lorentz force which depends on the intensity of magnetic field, conductivity and velocity of wastewater.

  • PDF

Economic Feasibility Study on the Efficient Use of Advanced Water Treatment for Water Supply (상수고도정수처리의 효율적 이용을 위한 경제성 검토)

  • 이상일
    • Water for future
    • /
    • 제29권1호
    • /
    • pp.191-202
    • /
    • 1996
  • Advanced water treatment for water supply is being introduced for the treatment of various organic materials which cannot be removed by conventional water treatment methods. While the development of advanced water treatment system appropriate to the domestic enviropment of advanced water treatment system appropriate to the domestic environment is essential, the study on the economic costs and the social impact is also of importance. In this paper, it is shown how to estimate the costs (capital and maintenance) for advanced water treatment facilities, especially those using ozone treatment combined with activated carbon process and membrance separation. Estimated costs were compared with the government budget. Also, a general relation between the system capacity and investment was derived. Four alternatives were considered form the aspect of the amount of water to be produced and the delivery system to the user. These alternatives were applied to the city of Pusan. It turned out that bottled water, produced only for drinking, has best economic advantages in having minimum system capacity without detriment to water quality.

  • PDF

A Demonstrative Operation of A Membrane Filtration System in Siheung Water Treatment Plant (시흥정수장 막여과시설 시범운영)

  • 김한승;김충환;김학철;윤재경;안효원
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 한국막학회 2004년도 Workshop
    • /
    • pp.57-68
    • /
    • 2004
  • A demonstrative operation of a membrane system with its caparity of 3,600m$^3$/d was carried out using reservoir water as raw water for the application of membrane filtration system to drinking water treatment. The operation was undertaken at a constant flux of 0.9 m$^3$/m$^2$/d for three months. Backwashing with NaClO of 3 ppm was allowed for 30 seconds every 20 minutes of filtration. Physical cleaning was introduced after 69 times of filtration/backwashing cycle with air-scrubbing and backwashing for 1 minute, and flushing for 2 minutes. In this study, water treatment performance was investigated compared with the existing rapid sand filtration process. The membrane system was operated with no significant problems during the test period. Higher water quality was obtained in the membrane filtration than in the rapid sand filtration in terms of particulate matters such as turbidity and microbes. Although the finished water of the membrane filtration contained slightly higher concentration in dissolved matters than that of the conventional one, it met the drinking water standard. The demonstrative operation showed that membrane filtration has a reliability in drinking water treatment. Researches should be needed on cost analysis through long-term operation and optimization of operation condition for further application.

  • PDF