• Title/Summary/Keyword: conventional water treatment

Search Result 567, Processing Time 0.026 seconds

Examples of clinical applications of flexible composite resin that is quite different from conventional composite resins (Conventional composite resin과 사뭇 다른 flexible composite resin의 여러 임상 활용 예)

  • Kim, Woohyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.92-102
    • /
    • 2020
  • Bond-Fill SB is made of powder/liquid, and the flowability can be controlled by adjusting the amount of liquid in the brush. Thanks to the strong catalyst called TBB, it has the advantage of being able to polymerize even in the presence of water and oxygen. Also, since it contains 4-META, it has the advantage of being able to adhere to metals and ceramics with appropriate surface treatment. If you fully understand these advantages, you can actively utilize them in cases where it is difficult to treat with conventional composite resin.

Stage by stage design for primary, conventional activated sludge, SBR and MBBR units for residential wastewater treatment and reusing

  • Aziz, Shuokr Qarani;Omar, Imad Ali;Bashir, Mohammed J.K.;Mojiri, Amin
    • Advances in environmental research
    • /
    • v.9 no.4
    • /
    • pp.233-249
    • /
    • 2020
  • To date, there is no central wastewater (WW) treatment plant in Erbil city, Kurdistan region, Iraq. Therefore, raw WW disposes to the environment and sometimes it used directly for irrigation in some areas of Erbil city. Disposal of the untreated WW to the natural environment and using for irrigation it causes problems for the people and the environment. The aims of the current work were to study the characteristics, design of primary and different secondary treatment units and reusing of produced WW. Raw WW samples from Ashty city-Erbil city were collected and analyzed for twenty three quality parameters such as Total Suspended Solids (TSS), total dissolved solids, total volatile and non-volatile solids, total acidity, total alkalinity, total hardness, five-day Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), biodegradability ratio (BOD5/COD), turbidity, etc. Results revealed that some parameters such as BOD5 and TSS were exceeded the standards for disposal of WW. Design and calculations for primary and secondary treatment (biological treatment) processes were presented. Primary treatment units such as screening, grit chamber, and flow equalization tank were designed and detailed calculation were illustrated. While, Conventional Activated Sludge (CAS), Sequencing Batch Reactor (SBR) and Moving Bed Biofilm Reactors (MBBR) were applied for the biological treatment of WW. Results revealed that MBBR was the best and economic technique for the biological treatment of WW. Treated WW is suitable for reusing and there is no restriction on use for irrigation of green areas inside Ashty city campus.

Development and Performance Evaluation of Electrodewatering System for Sewage Sludge Recycling

  • Lee, Jae-Keun;Lee, Jung-Eun;Shin, Hee-Soo;Park, Chan-Jung;Lee, Chang-Gun;Kim, Young-Hwan;Kim, Man-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.443-447
    • /
    • 2001
  • A laboratory-scale electrodewatering system for enhancing conventional filter pressure dewatering by an electric field has been developed to decrease the water content of sludge generated in the wastewater treatment. It consists of a piston-typed filter press, a power supply and data acquisition system. The offset of electrodewatering is investigated as a function of applied pressure, applied voltage, sludge type and filtration time. Also the optimal conditions for maximizing the dewatering efficiency in the eletrodewatering system are investigated. Electric field strength and mechanical pressure are in the range of from 0 to 120 V/cm and from 98.1 to 392.4 kPa. The dewatering rates increased with increasing electric strength. These experiments produced a final sludge cake with water content of 60 wt% using electrodewatering technology, compared with a 80 wt% using pressure filtration alone. The conventional filtration system using the electrodewatering shows the potential to be effective method for improving dewatering Sludge.

  • PDF

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.

A 4-week Oral Toxicity Study of Water-soluble Chitosan in Sprague-Dawley Rats (수용성 키토산의 SD 랫드에 대한 4 주 반복 경구 투여 독성시험)

  • Jang, Beom-su;Lim, Jong-hwan;Yun, Hyo-in
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.2
    • /
    • pp.195-202
    • /
    • 2003
  • Chitosan is known to have antibacterial, antitumorogenic, hypolipidemic and immunopotentiating activities, hence finding diverse uses as a component in varying functional foodstuffs. However, some investigators reported it caused mineral absoiption inhibition and excess coagulation. From the chemical viewpoint, conventional chitosans are high-molecule polymers lacking water solubility, which could be related with their possible toxicity. A newly developed low- molecule water soluble chitosan is thought to have low toxicity compared to conventional chitosans. But no investigation was carried out to evaluate its toxicity. In this study, a 28-day subacute oral toxicity study of the water-soluble chitosan was performed in Sprague-Dawley rats of both sexes. Each 36 male and female rats were orally administered with 500, 1,000 and 2,000 mg/kg/day for 28 consecutive days, respectively. Clinical parameters (growth rate, feed and water consumption, daily inspection, urine analysis) during the 28 days indicated the water-soluble chitosan did not induce any abnonnal changes. There were no abnormal findings due to the administration of the test substance in gross and microscopic findings. We had not found alteration in absolute and relative organ weight between the control and treated groups, with only exception in the liver but lacking dose-dependency. The results of hematology and serum biochemistry examination revealed that no treatment related changes were between control and all dose groups. In conclusion, it was suggested that subacute toxicity of the water-soluble chitosan was low and the no-observed adverse effect level was considered to be over 2,000 mg/kg in rats.

Optimal Management Scheme for Phosphorus Discharged from Public Sewage Treatment Plant Located in Upstream Basin of Paldang Lake (팔당호 상류수계에 위치한 공공 하수종말처리시설의 총인 배출 최적관리)

  • Woo, Younggug;Park, Eunyoung;Jeon, Yangkun;Jeong, Myungsuk;Rim, Jaymyung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.200-209
    • /
    • 2011
  • The purpose of the study is to optimally manage sewage treatment plant with analysis of phosphorus contribution and improvement of water quality contributing rate in the effect of inflowing point of effluent and Pal-Dang lake after reducing T-P discharge from large scale public sewage treatment plant at upstream of Pal-Dang lake. Also, this study, for enforcement of T-P in effluent, plans optimal management of effluent T-P through examining propriety of environmental, technological, and economical aspect such as water quality standard of domestic and foreign T-P and related policy. In regarding optimal management of T-P discharged from public sewage treatment plant located in upstream of Pal-Dang lake, the study drew following conclusions. With the optimal management of public sewage treatment plant, it showed that a pollution level became higher in the order of Sumgang E in South-Han river, C in Dalcheon, B1 B2, A in North-Han river, and J in Kyungancheon, and it is required reduction of T-P first. The highest value in analysis of benefit-costs from sewage treatment plant in the selected research area was Kyungan B, and the others are with the order of Jojong A, Bokha A, Kyungan A, and Yanghwa A. With result of this study, all 14 areas are required more enforced phosphorus treatment. The study resulted that the most top priority areas were Hangang F, Sumgang B, and Gyungan A, top priority areas were Bokha A, Dalcheon B, and Cheongmi A, priority areas were Hangang E, Heukcheon A, Gyungan B, and Jojong A, and potential areas were Sumgang A, Yanghwa A, Dalcheon A, and Hangang D. It seems to be appropriate to apply 0.2 mg/L of T-P treatment for water supply source reservation, 0.5 mg/L for the other areas by locally, and 0.2~0.5 mg/L for biological nitrogen phosphorus treatment method and 0.5~1 mg/L for Conventional Activated Sludge by technologically. Also, it may be appropriate to apply 0.2 mg/L for the most top priority area(I), 0.3 mg/L for the top priority area(II), 0.4 mg/L for priority area(III), and 0.5 mg/L for potential area(IV) by the separation of priority area.

Investigation of the changes in texture of soybean sprout depending on the heating conditions in sous-vide and conventional hot water cooking (Sous-vide가열과 열탕가열 조건에 따른 콩나물 머리와 줄기의 조직감 변화에 관한 연구)

  • Lee, Yun Ju;Jung, Hwabin;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.219-226
    • /
    • 2018
  • The purpose of this study was to investigate the effect of thermal treatments, such as a sous-vide and a conventional hot water cooking, on the texture changes of soybean sprout. A novel method to measure texture properties of soybean sprout have been determined because of the irregular geometry of soybean sprout. The shape of cotyledon of bean spout was accurately analyzed using an image processing and a geometry model. To minimize the effect of the contact area on the texture measurement, a blade type of probe was selected for the measurement. True stress was evaluated to reflect the shape changes during deformation, and demonstrated that the measurement accurately distinguished the effect of thermal treatment on the texture. Different heating time (i.e., 0, 10, 20, and 30 min) was applied for both sous-vide and conventional cooking. Thermal processing caused hardening of textures for both cotyledon and hypocotyl of soybean sprout. The conventional cooking method showed higher stress values than those of sous-vide cooking. Sprouts cooked by sous-vide released the moisture after thermal processing while sprout cooked by a conventional water bath method could hold the moisture content during thermal processing. The soybean sprouts treated by conventional cooking method showed a higher score in sensory evaluation.

Effect of Controlled Hydration on Germination of Tobacco Seeds

  • Min, Tai-Gi;Yoon, Hyo-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.322-325
    • /
    • 2003
  • Controlled hydration treatment of tobacco seeds enhanced seed performance greatly without additional materials associated with conventional osmotic or solid matrix priming technique. The seeds were hydrated by adding water to a level from 10 to 60% by 5% increments and incubated for 8 days at $25^{\circ}C$. After the treatment, the seeds were dried to the original seed moisture content under $20^{\circ}C$ for 72 hours. The moisture content of tobacco seeds equivalent to 35% by the hydration treatment gave the greatest improvement in germination rate and speed compared to untreated or polyethylene glycol (PEG) primed seeds, especially at low temperature of $15^{\circ}C$.

Application of Membrane Processes to the Treatment of Wastewaters in Japan

  • Yamamoto, Kazuo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.39-50
    • /
    • 1995
  • The membrane processes that are commonly uscd in water and wastewater treatment are reverse osmosis (Ro), ultrafiltration (UF) and microfiltration (MF), which utilize pressure differentials. There is also nano-filtration (NF), or low-pressure reverse osmosis, which is positioned midway between conventional reverse osmosis and ultrafiltration. Reverse osmosis membranes reject dissolved ions, while ultrafiltration can be used to reject relatively larger molecules, such as protein, polysacchalides and so on. Microfiltration is capable of eliminating particles at submicron level. This paper summarizes the characteristics of MSAS process first, as it is the main membrane process applied to wastewater treatment. Two successful examples of the applications, the cases of individual building reuse system and nightsoil treatment, are then shown. The latest trend of new membrane applications, i.e., immersed-type MSAS is also introduced.

  • PDF

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(II) - Application Methods of Chemicals for Improving Water and Moisture Resistance of Corrugated Boards - (농산물 저온유통용 내수 골판지 상자의 제조(제2보) - 골판지의 내수 및 내습성 향상을 위한 약품 적용 방법 -)

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.192-210
    • /
    • 2004
  • Application methods of chemicals were investigated tn minimize strength reduction of corrugated boards under the high humidity environment encountered in the cold chain system. Starch insolubilizers were introduced in the starch solution preparation of the Stain hall method and their insolubilization effect of starch binder were estimated. The performance of water repellent agents(WRA) and moisture proof agents(MPA) were evaluated in terms of water and moisture resistance. And effects of the combination of the chemicals and the coating method were also examined. Addition of the polyamine polyamide insolubilizer to the main part in the Stain hall process improved the binding force and water resistance of starch, which contributed to minimize the strength reduction of paper under the high humidity environment. AZC and Glyoxal type insolubilizers could not be used in the experiment due to an excessively increased viscosity of starch solution and the poor stability. Conventional WRA treatment to the base paper enhanced water and moisture resistance very slightly even though water repellency of the paper reached R10 by the treatment. MPA showed excellent performance than WRA not only in water and moisture resistance but in water repellency. Double coating on paper with MPA was more effective than the single coating at the same coating weight. A newly developed MPA showed excellent performance and runnability only by a single coating instead of a double coating.

  • PDF