• Title/Summary/Keyword: conventional vulcanization (CV)

Search Result 3, Processing Time 0.017 seconds

Effect of Various Cross-linking Types on the Physical Properties in Carbon Black-Filled Natural Rubber Compound (천연고무 배합물에서 가교형태 변화가 물성에 미치는 영향)

  • Park, Byung-Ho;Jung, Il-Gouen;Park, Sung-Soo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • The objective of this study was to investigate the effect of cure type on the processing and physical properties under conditions of similar stress-strain properties. On the carbon black filled natural rubber(NR) based compound, the induction time decreased, but the cure rate became fast with increasing loading of sulfur donor agent. Tensile strength was little affected on the curing type. However, elongation generally decreased with increasing accelerator. Effect of cure type on the blow-out properties was followings: CV

  • PDF

A Study on the Vulcanization System and Two-Step Foaming Properties for Natural Rubber Foam (천연고무의 가황시스템 및 성형공정에 따른 2단 발포 특성 연구)

  • Sunhee Lee;Ye-Eun Park;Dikshita Chowdhury
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.246-255
    • /
    • 2023
  • In this study, we investigated for natural rubber foam to replace petrochemical-based neoprene foam. Experiments were conducted on vulcanization system and 2-step foaming process of natural rubber. The vulcanization system were EV(Efficient Vulcanization Cure), Semi-EV(Semi-Efficient Vulcanization Cure) and CV(Conventional Vulcanization Cure). In the 2-step foaming process, first molding temperature was 140℃, times were 15, 20, 25, and 30minutes, and the second molding temperature was 160℃, the times 5, 10, 15, and 20minutes. The cure and viscosity characterization were evaluated by oscillating disc rheometer (ODR) and mooney viscosmeter. Various mechanical characteristics, including hardness, tensile strength, elongation at the point of rupture, and tear strength, were quantified. Subsequently, an assessment of alterations in these mechanical attributes was conducted post-immersion in a NaCl solution. In addition degree of volume change was measured after immersing the NR foam in NaCl solution and the low-temperature permanent compression set was evaluated at 4℃. And expansion ratio and shrinkage ratio of NR foam were evaluated for 28 days. As a result the EV vulcanization system showed the least change in physical properties before and after salt water immersion, and the lowest shrinkage ratio for 28 days. In addition it was confirmed that the 2-step foaming optimum condition differed depending on the appropriate vulcanization condition.

A Study on the Fatigue Property of Magneto-Rheological Elastomers

  • Kim, Tae Woo;Choi, You Jin;Kim, Nam Yoon;Chung, Kyung Ho
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.150-157
    • /
    • 2018
  • Fatigue properties of rubber are one of the most important characteristics in the rubber industry. In this study, the fatigue properties of MREs (magneto-rheological elastomers) based on NR (natural rubber), EPDM (ethylene-propylene diene monomer), and AEM (ethylene/acrylic elastomer) were investigated. For comparison, MREs with a Shore hardness of 60A were prepared. According to the relative results, the fatigue properties of EPDM MRE were the worst. Thus, we investigated methods to improve the fatigue properties of EPDM MRE by varying the carbon black content and curing systems of EPDM as the matrix of the MRE. Dynamic properties were measured using a fatigue tester and an RPA (rubber process analyzer), and the XPS (X-ray photoelectron spectroscopy) was used to analyze the curing system of the EPDM matrix. According to the results, the Payne effect increased and the fatigue resistance decreased as the carbon black content increased. In case of the curing system, the CV (conventional vulcanization) system was superior to the EV (efficient vulcanization) system in terms of the fatigue resistance. This was because the number of flexible bonds in the case of the CV system was higher than that in the case of the EV system. However, the EV system showed excellent mechanical properties because it had many monosulfidic bonds with strong binding energy.