• Title/Summary/Keyword: conventional concrete

Search Result 1,216, Processing Time 0.028 seconds

Strain interaction of steel stirrup and EB-FRP web strip in shear-strengthened semi-deep concrete beams

  • Javad Mokari Rahmdel;Erfan Shafei
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.383-393
    • /
    • 2023
  • Conventional reinforced concrete design codes assume ideal strain evolution in semi-deep beams with externally bonded fiber-reinforced polymer (EB-FRP) web strips. However, there is a strain interaction between internal stirrups and web strips, leading to a notable difference between code-based and experimental shear strengths. Current study provides an experiment-verified detailed numerical framework to assess the potential strain interaction under quasi-static monotonic load. Based on the observations, steel stirrups are effective only for low EB-FRP amounts and the over-strengthening of semi-deep beams prevents the stirrups from yielding, reducing its shear strength contribution. A notable difference is detected between the code-based and the study-based EB-FRP strain values, which is a function of the normalized FRP stress parameter. Semi-analytical relations are proposed to estimate the effective strain and stress of the components considering the potential strain interaction. For the sake of simplification, a linearized correction factor is proposed for the EB-FRP web strip strain, assuming its restraining effect as constant for all steel stirrup amounts.

Remote control of Drum/Chute mechanism in a concrete mixer-truck (콘크리트 믹서 트럭에서의 드럼 및 슈트의 원격 제어)

  • Lee, M.C.;Son, K.;Jeong, W.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-29
    • /
    • 1993
  • A remote control system was developed in order to operate by push-buttons the conventional drum and chute components, which have been operated manually, in a concrete mixer-truck. As actuators, a hydraulic power unit was used for chute operations: two DC motors for drum operations. The devised drum controller consisted of three electric circuits : an analog proportional-integral control circuit, a drum acceleration circuit, and an emergency stop circuit. The remote control system was installed to be tested experimentally and then was evaluated to work successfully with a desirable accuracy.

  • PDF

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa (120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도)

  • Sim, Hye-Jung;Chun, Sung-Chul;Choi, Sokhwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.365-373
    • /
    • 2016
  • Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.

Development of Concrete-Polymer Composite(II) -Physical Properties of Polymer(Resin) Concrete- (콘크리트-폴리머 복합재료 개발(II) -폴리머(레진) 콘크리트의 물성-)

  • Hwang, Eui-Hwan;Hwang, Taek-Sung;Kil, Deog-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1066-1072
    • /
    • 1999
  • The physical properties of polymer concrete were investigated for development of high-performance construction materials. Various specimens of polymer concrete were prepared using unsaturated polyester resin as the polymer-binder with the various dosage of calcium carbonate as microfiller (5~20 wt %) and fine aggregate(10~50 wt %). For the evaluation of the physical properties of polymer concretes, tests such as compressive strength, flexural strength, water absorption test, hot water immersion test, acid resistance test and pore size distribution analysis were conducted. As a result, it is concluded that compressive and flexural strengths of polymer concretes increased up to 4 times than those of conventional cement concrete. Whereas the compressive and flexural strengths of polymer concretes tested after hot water immersion, compared with those of polymer concretes tested before hot water immersion, decreased about 67%, 47%, respectively. By hot water immersion, total pore volume and porosity(%) of polymer concretes were remarkable increased due to decomposition of polymer binder. And also, it is showed that water absorption(%) and weight loss(%) of polymer concrete specimens by acid immersion, compared with those of ordinary portland cement concrete, decreased about 1/100, 1/27, respectively.

  • PDF

Spectral Energy Transmission Method for Crack Depth Estimation in Concrete Structures (콘크리트 구조물의 균열 깊이 추정을 위한 스펙트럼 에너지 기법)

  • Shin, Sung-Woo;Min, Ji-Young;Yun, Chung-Bang;Popovics, John S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.164-172
    • /
    • 2007
  • Surface cracks in concrete are common defects that can cause significant deterioration and failure of concrete structures. Therefore, the early detection, assessment, and repair of the cracks in concrete are very important for the structural health. Among studies for crack depth assessment, self-calibrating surface wave transmission method seems to be a promising nondestructive technique, though it is still difficult in determination of the crack depth due to the variation of the experimentally obtained transmission functions. In this paper, the spectral energy transmission method is proposed for the crack depth estimation in concrete structures. To verify this method, an experimental study was carried out on a concrete slab with various surface-opening crack depths. Finally, effectiveness of the proposed method is validated by comparing the conventional time-of-flight and cutting frequency based methods. The results show an excellent potential as a practical and reliable in-situ nondestructive method for the crack depth estimation in concrete structures.

Influence of Reinforcements on the Chloride Diffusion Analysis of Concrete Structures (철근의 영향을 고려한 콘크리트 구조물의 염소이온 확산해석)

  • 오병환;장봉석;이명규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.883-891
    • /
    • 2002
  • The chloride penetration in concrete structures is influenced by many factors such as types of cement and admixture proportion. Therefore, the effects of these factors on chloride diffusion must be correctly considered. The conventional diffusion analysis also neglected the existence of reinforcing bar in concrete structures. The purpose of the present paper is therefore to investigate the effect of reinforcing bar on the chloride diffusion in concrete structures. For this purpose, a comprehensive finite element analyses have been conducted to obtain chloride penetration profile. The results indicate that the chlorides are accumulated in front of a reinforcing bar and that the accumulation is much larger for the case of large diameter bars. The higher accumulation of chloride at bar location causes much faster corrosion of reinforcing steel. It can be concluded from the present study that the effects of reinforcing bars must be considered in chloride diffusion analysis for more realistic prediction of durable life of concrete structures.

Bond Characteristics of Ultra High Performance Concrete (초고성능 콘크리트(UHPC)의 부착특성에 관한 연구)

  • Kook, Kyung-Hun;Shin, Hyun-Oh;Kwahk, Im-Jong;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.753-760
    • /
    • 2010
  • Ultra high performance concrete (UHPC), is characterized by its high compressive strength and advanced tensile behavior that is much superior to those of conventional concrete. In order to apply this new material in practice, the bond characteristics of UHPC were evaluated in this study. Pull-out tests between UHPC and deformed steel rebar were carried out according to the modified RILEM test method, and were verified by finite element analysis. From the test results showed that UHPC presents 5 to 10 times higher bond strength compared to normal strength concrete, this study suggested remarkably reduced development length and concrete cover comparing to existing specifications. The test results of 700 MPa high strength steel rebar demonstrated the applicability of high strength steel to UHPC. In addition, the transfer length measurements of seven-wire strand in UHPC specimens indicated that the transfer length limit set by the current design code is very conservative for UHPC.

Flexural Crack for Fiber-Reinforced-Polymer Reinforced Concrete Beams (GFRP 보강근 콘크리트 보의 휨균열)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.273-276
    • /
    • 2008
  • The use of FRP(Fiber Reinforced Polymer) bars to replace conventional steel bars in reinforcing concrete structures is currently encouraged by many structural engineers, especially for their noncorrosive properties. The partial inferiority of the bond and mechanical properties for FRP bars, however, leads to wider and deeper cracks compared with those of steel reinforced concrete structures. This paper presents experimental results of concrete beams reinforced with FRP bars tested under static loading conditions up to failure. The study focuses on the effects of the reinforcement ratio on the behavior of concrete beams at various stages during loading. The study also attempts to establish a theoretical basis for the development of simple and rational design procedures for concrete beams reinforced with FRP bars.

  • PDF

Prediction of Shear Strength of FRP Concrete Beams without Stirrups by Artificial Neural Networks (인공신경망에 의한 스터럽 없는 FRP 콘크리트 보의 전단강도 예측)

  • Lee, Cha-Don;Kim, Won-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.801-804
    • /
    • 2008
  • Fiber reinforced plastics (FRP) are light in weight, non-corrosive and exhibits high tensile strength. FRPs having superior material properties to corrosive steels have been widely replacing steel bars or tendons used in concrete structures as flexural reinforcements. Although current design guidelines for estimating shear strength of FRP concrete beam follow the format of conventional reinforced concrete design method, there are noticeable differences among the existing formulas in calculating the contributions of concrete to shear resistance. In this paper, the artificial neural network (ANN) technique is employed as an analytical alternative to existing methods for predicting shear capacity of FRP concrete beams. Influential factors on shear strength were identified through literature review and input in ANN and the ANN was trained for the target ultimate shear obtained from database. The results from ANN were compared with existing formulas for its accuracy. It was found that the developed ANN were more closely predicting the test data than those of the currently available predictive equations.

  • PDF

Bond Failure Surface of Glass Fiber Reinforced Polymer Bars (GFRP 보강근의 부착파괴면)

  • Lee, Jung-Yoon;Yi, Chong-Ku;Kim, Tae-Young;Park, Ji-Sun;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.383-391
    • /
    • 2008
  • The effects of concrete strength on bond-slip behavior and the failure mechanisms of glass fiber reinforced polymer (GFRP) bar embedded in concrete under direct pullout were investigated in this study. Total of twenty seven specimens were prepared by placing two different types of GFRP bars and conventional steel rebar in 25 MPa, 55 MPa, and 75 MPa concrete and tested according to CSA S806-02. The test results showed that the bond strength of the GFRP rebars as well as the steel increased with the concrete strength. However, the increase in the bond strength with respect to the concrete strength was not as significant in the GFRP series as the steel, and it was attributed to the interlaminar failure mechanism observed in the GFRP test specimens.