• Title/Summary/Keyword: conventional concrete

Search Result 1,216, Processing Time 0.026 seconds

Analytical Approach on the Concrete Columns with Welded Reinforcement Grids (격자형 용접 띠철근으로 보강된 콘크리트 기둥의 해석적 접근)

  • Choi, Chang Sik;Murat, Saatcioglu;Mongi, Grira
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.137-146
    • /
    • 1999
  • Analysis of R/C columns requires modeling of the plastic hinge region, as well as nonlinear material characteristics. This becomes a challenging task in view of the nonlinearity of both steel and concrete. Furthermore, formation and progression of plasticity in the hinge is a difficult phenomenan to simulate, especially under reversed cyclic loading and decaying strength conditions. This research provide one analytical model employed in column analysis, including the analysis procedure for establishing inelastic force-deformation relationships. The analytical results show good correlation with experimental data. The employed procedure with the adopted analytical models can be used to compute inelastic displacements of concrete columns with welded reinforcement grids. The inelastic deformability beyond the peak was similar to those indicated by columns with conventional ties. The superior performance of columns with welded grids may be attributed to the improved confinement characteristics of grids associated with increased rigidity of welded ties.

  • PDF

Study of exterior beam-column joint with different joint core and anchorage details under reversal loading

  • Rajagopal, S.;Prabavathy, S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.809-825
    • /
    • 2013
  • In the present study, in reinforced concrete structures, beam-column connections are one of the most critical regions in areas with seismic susceptibility. Proper anchorage of reinforcement is vital to enhance the performance of beam-column joints. Congestion of reinforcement and construction difficulties are reported frequently while using conventional reinforcement detailing in beam-column joints of reinforced concrete structures. An effort has been made to study and evaluate the performance of beam-column joints with joint detailing as per ACI-352 (mechanical anchorage), ACI-318 (conventional hooks bent) and IS-456(full anchorage conventional hooks bent) along with confinement as per IS-13920 and without confinement. Apart from finding solutions for these problems, significant improvements in seismic performance, ductility and strength were observed while using mechanical anchorage in combination with X-cross bars for less seismic prone areas and X-cross bar plus hair clip joint reinforcement for higher seismic prone areas. To evaluate the performances of these types of anchorages and joint details, the specimens were assembled into four groups, each group having three specimens have been tested under reversal loading and the results are presented in this paper.

A Study on Life Cycle Cost Analysis of Latex Modified Concrete Pavement for Bridges (LMC 교면 포장 공법의 생애주기비용분석에 관한 연구)

  • Cho, Hyo-Nam;Choi, Hyun-Ho;Jung, Pyoung-Ki;Lim, Jong-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.185-195
    • /
    • 2001
  • Latex Modified Concrete(LMC) has been widely used for the pavement of highway bridges over the past 35years around the world since it is more resistant to the intrusion of chloride ions, has higher tensile, compressive, and flexural strength, and has greater freeze-thaw resistance. However, in Korea, it has not been introduced to fields due to higher initial construction cost for its overlay compared with that of conventional pavement materials. Due to durable characteristics, it should be noted that the LMC may be more cost-effective than conventional pavements such as asphalt pavement, when life-cycle cost(LCC) concept is considered. The objective of this study is intended to suggest a practical LCC analysis model for pavement projects and to demonstrate relative cost-effectiveness of the LMC overlays in comparison with conventional pavement techniques. It may be stated that the procedure proposed in this study may be utilized for making optimal decision on cost-effective pavement design.

  • PDF

The easy-check sensor to evaluate the development of concrete crack (콘크리트 구조물의 균열진행 측정용 간이센서 개발)

  • 전규식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.635-638
    • /
    • 1999
  • The crack of concrete is one of the most important factors to evaluate the safety of the structures. The more important point for the safety-evaluation of the concrete structures is to check the crack development, the conventional window paper (Chang Ho Ji) have been used as a simple method in the past, and nowadays the strain gauge is used for more correct way to check the development of the concrete crack quantitatively. However the window-paper method is too simple and not so scientific, and the strain-gauge method is rather complicated for people in general. This Easy-Check Sensor provides the simple usage for the various concrete structures, but also the more correct results to evaluate the development of the concrete crack.

  • PDF

Material property evaluation of high strength concrete using conventional and nondestructive testing method (재래 및 비파괴검사를 이용한 고강도 콘크리트의 재료특성에 관한 연구)

  • 조영상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.629-634
    • /
    • 2001
  • This study is to characterize the material property of early age high performance concrete emphasizing compressive strength using nondestructive testing methods. Three high performance concrete slabs of 600, 850 and 1100kg/$cm^{2}$ compressive strengths were prepared together with cylinders from same batches. Cylinder tests were peformed at the ages of 7, 14, 21 and 28 days after pouring. Using the impact echo method, the compression wave velocities were obtained based on different high performance concrete ages and compressive strengths. The equation to obtain the compressive strengths of high performance concrete has been developed using the obtained compression wave velocities. Using the SASW (spectral analysis of surface wave) method, the equation have also been developed to obtain the compressive strengths of high performance concrete based on the surface wave velocities.

  • PDF

Development of Durability Design System for Concrete Structures (콘크리트 구조물의 내구성 설계시스템 개발)

  • 변근주;권성준;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.161-166
    • /
    • 1998
  • The concrete structures designed and constructed by conventional design concept based on structural performance consideration show sometimes serious durability problem when the structures are exposed to aggressive environment. Because present design system focuses on the structure safety and considers durability indirectly by the concrete mix design and cover depth, the durability of concrete structure cannot be ensured. As the first step to develope the durability design for concrete structure, durability index which represents internal concrete resistance and environment index which represents external environmental exposure are derived quantitatively. In the next step, the durability design system is developed by checking durability limit state with computed two indexes under service life condition by considering of the reliability of structure. Finally, the proposed system is verified with a model problem.

  • PDF

An Experimental Study on Water-Purification Properties of Porous Concrete Utilizing Recycled Aggregate (재생골재를 사용한 포러스 콘크리트의 수질정화 특성에 관한 실험적 연구)

  • 김정환;조광연;조청휘;이봉춘;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.925-928
    • /
    • 2001
  • Recently great efforts and investment have been made in order to achieve economical production by applying new methods like minimization of man-Power into construction field. This paper describe the performance of water purification, to which living organisms can adapt, and the physical properties of porous concrete with continuous voids. Although conventional concrete has been regarded as a destroyer of nature, water and air can pass freely through concrete when it is made porous by forming continuous voids. this not only enables plants to vegetables, but also makes it possible for microscopic animals and plants, including bacteria, to attach to and inhabit uneven surface as well as internal voids when the concrete is provided in a natural water area or waterside area. As a result, Porous concrete using recycled aggregate improved the performance of water purification.

  • PDF

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

Concrete Recycling considering Risk Evaluation of Impurities in Recycled Aggregate (순환골재 불순물의 위험성을 고려한 콘크리트 리사이클링)

  • Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.95-97
    • /
    • 2012
  • Recycled aggregate (RA) produced from demolished concrete waste can bring about several problems on concrete performance, when it is used as aggregate for new concrete. Because RA generally has lower quality than natural aggregate due to the residual cement paste attached on RA and various impurities. It is also very difficult to ensure that the quality of RA remains consistent, because generally RA is produced variously. Thus, in concrete recycling, it is extremely important to estimate the risk of the impurities which could affect performances of recycled aggregate concrete (RAC) focusing on the material flow of concrete waste and its recycling. This study suggests an evaluation result to expect the possibility of impurity mixing in RA production procedure. and suggests a risk evaluation model to expect the changes of RAC performances based on conventional data in Japan.

  • PDF

An Experinetal Study on the Influence of Cement Content to Engineering Properties of High Strength Concrete (고강도콘크리트의 공학적 특성에 미치는 단위시멘트량의 영향에 관한 실험적 연구)

  • 남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.41-46
    • /
    • 1992
  • A potential use of superplasticizing admixture is to produce structural concrete of High-strength concrete,. By using a superplasticizer, more workable mixes can be achieved while permitting a high cement content and a low water/cement ratio both of which are necessary to obtain high strength by conventional manufacturing technique. In this study, therefore, high strength concrete having a 28-day strength in excess of 650kg/$\textrm{cm}^2$ can be obtained using a superplasticzer. However, before such a high strength concrete is recommended for use, engineering properties have to be assessed. This study is aimed to analyze and investigate the engineering properties, such as strength, elasticity, ultrasonic pulse velocity, rebound value of superplasticized concrete having a various cement content.

  • PDF