• 제목/요약/키워드: convective velocity

검색결과 259건 처리시간 0.023초

Laminar Convective Heat Transfer from a Horizontal Flat Plate of Phase Change Material Slurry Flow

  • Kim Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.779-784
    • /
    • 2005
  • This paper presents the theory of similarity transformations applied to the momentum and energy equations for laminar, forced, external boundary layer flow over a horizontal flat plate which leads to a set of non-linear, ordinary differential equations of phase change material slurry(PCM Slurry). The momentum and energy equation set numerically to obtain the non-dimensional velocity and temperature profiles in a laminar boundary layer are solved. The heat transfer characteristics of PCM slurry was numerically investigated with similar method. It is clarified that the similar solution method of Newtonian fluid can be used reasonably this type of PCM slurry which has low concentration. The data of local wall heat flux and convective heat transfer coefficient of PCM slurry are higher than those of water more than 150$\~$200$\%$, approximately.

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

사각채널 내 고 Pr 수의 혼합대류 볼텍스 유동에 관한 3차원 수치적 연구 (Three-Dimensional Numerical Study on Mixed Convective Vortex Flow in Rectangular Channels at High Prandtl Number)

  • 박일룡;배대석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.29-30
    • /
    • 2005
  • A three-dimensional numerical calculation has been performed to investigate mixed convective vortex flow in rectangular channels(width/height=4) with the upper part cooled and the lower part heated uniformly. In this study, the Prandtl number was 909, the Reynolds number was varied from 0 to $9.6{\times}10^{-2}$ and the Rayleigh number from $10^3$ to $5{\times}10^4$. The governing equations were discretized using the finite volume method. From a parametric study, velocity and temperature distributions were obtained and discussed. It is found that vortex flow of mixed convection in rectangular channels can be classified into three flow patterns which depend on Reynolds and Rayleigh numbers, and the regular vortex structure disappears around Rayleigh number $5{\times}10^4$.

  • PDF

Convective Heat Transfer in Ventilated Space wit=h Various Partitions

  • Bae, Kangyoul;Chung, Hanshik;Jeong, Hyomin
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.676-682
    • /
    • 2002
  • The laminar convective heat transfer in ventilated space with various horizontal partitions was studied numerically and experimentally For the numerical study, the governing equations were solved by using a finite volume method for various numbers Re, Gr, Pr and partition numbers. The experimental study was conducted by using a holographic interferometer. The isotherms and velocity vectors have been presented for various parameters. As the number and length of partition increased, convective heat transfer decreased. Based on the numerical data, correlation equations were obtained for the mean Nusselt number in term of Gr/Re$^2$. In the region of Gr/Re$^2$$\leq$ 1, the mean Nusselt number was small, but in the region of Gr/Re$^2$> 1, the mean Nusselt number was constant.

비뉴톤유체의 복합대류 열전달에 관한 실험적 연구 (An Experimental Investigation on Combined Convective Heat Transfer of NonNewtonian Fluids)

  • 김용진
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1770-1779
    • /
    • 1995
  • A combined convective heat transfer study for non-Newtonian fluids was experimentally performed in uniformly heated horizontal tubes with laminar flow in the thermal entry region. Velocity profiles were fully developed at the entrance of the heated sections in the tubes. Aqueous solutions of sodium carboxymethylcellulose(CMC ) were used; their behavior showed a reasonably good fit into the power-law model, .tau.=K.gamma.$^{n}$ . The test sections were made of copper with inside diameters of 3.23 cm and 5.042 cm and lengths of approximately 300 cm. Most experimental runs displayed noticeable secondary flows caused by buoyancy ; when present, secondary flows caused significant increase in the rate of heat transfer over the purely forced-convection case. A correlation, which relates the rate of heat transfer for flows with temperature-dependent properties, free convection effects, and non-newtonian effects, was suggested.

초임계상태의 물에 대한 관 내 층류유동장 및 열전달계수 분포특성에 관한 연구 (A Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.768-778
    • /
    • 2003
  • Numerical analysis has been carried out to investigate laminar convective heat transfer in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variations of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudocritical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number, Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity to the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

고온 고압 유동장에서 햅탄 액적의 기화 특성 (Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field)

  • 고정빈;구자예
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

상변화를 수반하는 이상류(二相流)가 흐르는 원관 주위에서의 난류 열전달 (Turbulent Convective Heat Transfer over a Circular Tube Carrying Gas-Liquid Two Phase Flow with Phase Change)

  • 유성연;김유;정명균
    • 대한설비공학회지:설비저널
    • /
    • 제16권1호
    • /
    • pp.74-80
    • /
    • 1987
  • Turbulent convective heat transfer phenomenon which occur around the evaporator section of heat pump were analyzed experimentally. For this purpose a special wind tunnel and a heat pump system were designed and fabricated. Evaporator section was installed perpendicular to air flow direction and part of the evaporator was made of a glass tube for visual observation. The velocity distribution, turbulent intensity and temperature distribution were measured by hot wire technique and thermocouples. An experimental correlation for the convective heat transfer coefficient was obtained and the result is somewhat higher than the value calculated from Hilpert equation. The difference in two equations is believed to be due to the boning effect inside the evaporator tube.

  • PDF

The Generative Mechanism of Cloud Streets

  • Kang Sung-Dae;Kimura Fujio
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권2호
    • /
    • pp.119-124
    • /
    • 1997
  • Cloud streets were successfully simulated by numerical model (RAMS) including an isolated mountain near the coast, large sensible heat flux from the sea surface, uniform stratification and wind velocity with low Froude number (0.25) in the inflow boundary. The well developed cloud streets between a pair of convective rolls are simulated at a level of 1 km over the sea. The following five results were obtained: 1) For the formation of the pair of convective rolls, both strong static instability and a topographically induced mechanical disturbance are strongly required at the same time. 2) Strong sensible heat flux from the sea surface is the main energy source of the pair of convective rolls, and the buoyancy caused by condensation in the cloud is negligibly small. 3) The pair of convective rolls is a complex of two sub-rolls. One is the outer roll, which has a large radius, but weak circulation, and the other is the inner roll, which has a small radius, but strong circulation. The outer roll gathers a large amount of moisture by convergence in the lower marine boundary, and the inner roll transfers the convergent moisture to the upper boundary layer by strong upward motion between them. 4) The pair of inner rolls form the line-shaped cloud streets, and keep them narrow along the center-line of the domain. 5) Both by non-hydrostatic and by hydrostatic assumptions, cloud streets can be simulated. In our case, non-hydrostatic processes enhanced somewhat the formation of cloud streets. The horizontal size of the topography does not seem to be restricted to within the small scale where non-hydrostatic effects are important.

  • PDF