• Title/Summary/Keyword: convection tube

Search Result 169, Processing Time 0.03 seconds

A Study on Comparison of Heat Transfer Characteristic and Heat Storage Capability of $C_{28}H_{58}$ and $Na_4P_2O_7{\cdot}10H_2O$ ($C_{28}H_{58}$$Na_4P_2O_7{\cdot}10H_2O$의 전열특성 및 축열성능 비교에 관한 연구)

  • Yim, Chang-Soon;Kim, Jun-Keun;Cho, Nam-Cheol;Kim, Young-Ki
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.41-50
    • /
    • 1991
  • Heat transfer phenomena and temperature characteristics in heat storage and release process in the heat storage system using PCM(Phase Change material) were studied experimentally. The melting points of Octacosane paraffin($C_{28}H_{58}$) and sodium pyrophosphate decahydrate ($Na_4P_2O_7{\cdot}10H_2O$) used for phase change materials are $62^{\circ}C$ and $79^{\circ}C$ respectively. Experiments were performed in order to investigate temperature distributions, the heat storage quantity and the release quantity on octacosane paraffin and sodium pyrophosphate decahydrate for heat storage and release in the heat storage system. Furthermore the comparison of these characteristics between paraffin and $Na_4P_2O_7{\cdot}10H_2O$ were evaluated. In case of the paraffin, temperature slowly increased at early heat storage process by natural convection, while temperature of $Na_4P_2O_7{\cdot}10H_2O$ rapidly increased the dominant role played by conduction at early heat storage processing Also, during the heat storage and release process in case of the paraffin, it was observed that the variation of temperature of the neighborhood of wall and center in the top and bottom of the tube exhibited a great difference, however in $Na_4P_2O_7{\cdot}10H_2O$, it was observed that the variation of temperature exhibited a little difference. And heat storage quantity of each PCM of identity mass in heat storage process was shown that $Na_4P_2O_7{\cdot}10H_2O$ exhibited more by 16 percents than paraffin.

  • PDF

Development of heat exchanger for underground water heat. II - Design and manufacture for heat exchanger of underground water - (지하수 이용을 위한 열교환기 개발. II - 지하수이용 냉·난방기 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.128-137
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger by using the parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. 0247164, offered by Korean Intellectual property Office). The trial manufactures were made from Aloo-heat which was 600mm, 700mm length respectively, and It were welded to the end "U" type in order to direct flow of the underground water. The performance test was carried out under the condition of open space and room temperature with the change of flow rate of the underground water and air. The results are as follows. 1. The trial manufactures had convection heat value from 33 to 156 W/m2℃, and It was coincided with design assumption. 2. The amount of energy transfer was increased with the increment of the area of heat transfer, the air flow, the gap of temperature inlet & outlet the underground water and the air. 3. The heat value was 6,825W when the air flow was 6,000m3/h and the gap of temperature between inlet and outlet of the underground water was 6℃, and It dropped from 25.8℃ to 23.2℃(-2.6℃ difference). The convection heat value was 88.5W/m2℃. 4. The heat value was 2.625W when the air flow was 4,000m3/h and the gap of temperature between inlet and outlet the underground water was 2℃, and It dropped from 27℃ to 22.5℃(-4.5℃ difference). The convection heat value was 33.6W/m2℃. 5. Correlation values(R2) of the testing heat values of the trial manufacture type I, II, and III were 0.9141, 0.8935, and 0.9323 respectively, and correlation values(R2) of the amount of the air flow 6,000m3/h, 5,000m3/h, 4,000m3/h were 0.9513, 0.9414, and 0.9003 respectively.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.

Analysis of Hospital Foodservice Management and Health Insurance Coverage of Inpatient Meals in Seoul (서울지역 의료기관의 급식서비스 및 환자식 급여화 현황 분석)

  • Kim, Hye-Jin;Kim, Eun-Mi;Lee, Geum-Ju;Lee, Jung-Joo;Lim, Jung-Hyun;Lee, Jung-Min;Jeon, Hyun-Jung;Lee, Hae-Young
    • Journal of the Korean Dietetic Association
    • /
    • v.16 no.4
    • /
    • pp.378-396
    • /
    • 2010
  • The objectives of this study were to explore hospital foodservice management and to investigate conditions related to health insurance coverage of inpatient meals. A questionnaire was distributed to the nutrition departments of 44 hospitals in Seoul on July 2009. The average kitchen area was 0.5 $m^2$, and centralized distribution systems were in place. Partition walls from contamination zones, separate work tables to prevent cross-contamination, exclusive areas for preparing tube feeding, and split carts with refrigerated and convection heat settings were largely used in tertiary hospitals. Most dietitians did meal rounds (93.2%) and surveyed for patient satisfaction (86.4%). The major theme of QI (Quality Improvement) was menu management (31.8%). The health insurance fees for meals were (won)4,938.9 for a general diet, (won)5,199.8 for a therapeutic diet, (won)4,067.0 for tube feeding, (won)9,950.0 for sterilized diet, and (won)18,383.4 for diets not covered by health insurance. The prices for general and therapeutic diets were significantly lower in hospitals compared to tertiary or general hospitals (P<0.001). The cost composed of 48.3% food, 44.0% labor and 7.7% overhead for general diets and 47.9%, 44.5% and 7.6% for therapeutic diets. In the case of health insurance coverage for patient meals, the number of items applied to general diets averaged 2.8 out of 4 and for therapeutic diets it averaged 1.9 out of 3. To reform the health insurance coverage system for patient meals, it is urgent that the qualified level of patient meals is presented from a national viewpoint, and monitoring should be performed consistently by developing the evaluation tools.

Study on Analytical and Empirical Methods for Assessing Geo-Heat Transfer Characteristics (지중열전달특성 평가에 관한 해석 및 실험적 방법에 관한 연구 - 지중 열물성치 및 보어 홀 열 저항 평가 -)

  • Park Jun-n;Baek Nam-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This study treats the advantage of in situ line source method measuring the heat transfer capacity of a borehole, using mobile equipment, to determine the thermal properties of the entire borehole system such as thermal conductivity, diffusiveity. volumetric heat capacity, and borehole thermal resistance. The results from the response test include not only the thermal properties of the ground and the borehole, but also conditions that are difficult to estimate, e,g. natural convection in the boreholes, asymmetry in the construction, etc. In this study, 1) theoretical in situ methods for assessing working fluid temperature variation in V-type PE tube have been introduced, and 2) TRTE(Thermal Response Test Equipment) has been built based on these kinds of theoretical in situ methods. Basically TRTE consists of a pump, a heater and temperature sensors for measuring the inlet and outlet temperatures of the borehole. In order to make equipment easily transportable it is set up on a small trailer. Since the response test takes above two days to execute, the test was fully automatic in recording measured data using Labview DAS(Data acquisition system) program. The test was demonstrated in the course of intensive research in this field through the one site at Ulsan city in Korea. From this kind of thermal properties test of borehole systems in situ, the design of the borehole system can be optimized regarding the total geological, hydro-geological and technical conditions at the location.

  • PDF

A new formulation for unsteady heat transfer of oscillatory flow in a circular tube (원관내 왕복유동에서 비정상 열전달 관계식의 공식화)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2953-2964
    • /
    • 1996
  • Heat Transfer with periodic fluctuation of fluid temperature caused by oscillatory flow or compression expansion can be out of phase with balk fluid-wall temperature difference. Newton's law of convection is inadequate to describe this phenomenon. In order to solve this problem the concept of the complex Nusselt number has been introduced by severla researchers. The complex Nusselt number expresses out of phase excellently while the first harmonic is dominant in the variations of both fluid-wall temperature difference and heat flux. However, in the case of oscillatory flow with non-linear wall temperature distribution, the complex Nusselt number is not appropriate to predict the heat transfer phenomena since the higher order harmonic components appear in periodic temperature variation. Analytic solutions to the heat transfer with an sinusoidal well temperature distribution were obtained to investagate the effect of non-linear wall temperature distribution. A new formula considering the thermal boundary layer was suggested based on the solutions. A comparison was also made with the complex Nusselt number. It was verified that the new formula describes well the heat transfer of oscillating flow even if the first harmonic component is not dominant in the fluid-wall temperature difference.

An Experimental Study of Nucleate Boiling Heat Transfer With EHD Technique in CFC-11 and HCFC-123 (Chiller용 냉매 CFC-11과 대체냉매 HCFC-123의 전기장을 사용한 핵비등 열전달 촉진에 관한 연구)

  • Kwak, T.H.;Kim, J.H.;Jung, D.S.;Kim, C.B.;Cha, T.W.;Han, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.365-379
    • /
    • 1994
  • Pool boiling experiments were carried out to study the effect of electric field on nucleate boiling heat transfer. CFC-11 and its alternative HCFC-123 were used as working fluids. Boiling on both single tube and a bundle of five tubes was investigated. Heat flux varied from 5 to $25kW/m^2$ while the applied voltage changed from 0 to 1kV. The results showed that at low heat flux where boiling was not present or very weak, electric field-induced forced convection helped increase the heat transfer coefficients of CFC-11 and HCFC-123 significantly(4-15 times increase). However, at higher heat flux, nucleate boiling of CFC-11 which is a highly dielectric fluid, was not affected significantly by the application of electric field. In contrast to CFC-11, even at high heat flux, nucleate boiling of CFC-11 which has a relatively larger electric conductivity than CFC-11, was vigorously increased up to 2-4 times. The additional power required to apply the electric field was 1-2% of the total power consumption by the heater. The increase in overall heat transfer coefficient of evaporators with HCFC -123 was about 40%, suggesting a considerable reduction in evaporator size with EHD technique.

  • PDF

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.