• 제목/요약/키워드: controlled synthesis

검색결과 625건 처리시간 0.027초

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF

면역보조제의 작용 및 개발 (A Current Research Insight into Function and Development of Adjuvants)

  • 손은수;손은화;표석능
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.131-142
    • /
    • 2004
  • In recent years, adjuvants have received much attention because of the development of purified subunit and synthetic vaccines which are poor immunogens and require adjuvants to evoke the immune response. Therefore, immunologic adjuvants have been developed and testing for most of this century. During the last years much progress has been made on development, isolation and chemical synthesis of alternative adjuvants such as derivatives of muramyl dipeptide, monophosphoryl lipid A, liposomes, QS-21, MF-59 and immunostimulating complexes (ISCOMS). Biodegradable polymer microspheres are being evaluated for targeting antigens on mucosal surfaces and for controlled release of vaccines with an aim to reduce the number of doses required for primary immunization. The most common adjuvants for human use today are aluminum hydroxide and aluminum phosphate. Calcium phosphate and oil emulsions have been also used in human vaccination. The biggest issue with the use of adjuvants for human vaccines is the toxicity and adverse side effects of most of the adjuvant formulations. Other problems with the development of adjuvants include restricted adjuvanticity of certain formulations to a few antigens, use of aluminum adjuvants as reference adjuvant preparations under suboptimal conditions, non-availability of reliable animal models, use of non-standard assays and biological differences between animal models and humans leading to the failure of promising formulations to show adjuvanticity in clinical trials. The availability of hundreds of different adjuvants has prompted a need for identifying rational standards for selection of adjuvant formulations based on safety and sound immunological principles for human vaccines. The aim of the present review is to put the recent findings into a broader perspective to facilitate the application of these adjuvants in general and experimental vaccinology.

막대형 Ni-Zn 페라이트 입자의 합성 및 특성 평가 (Synthesis and Characterization of Rod-Shaped Ni-Zn Ferrite Particles)

  • 전승엽;황진아;전명표
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.300-306
    • /
    • 2018
  • The rod-shaped $Ni_{0.5}Zn_{0.5}Fe_2O_4$ particles were synthesized via a topotactic reaction, in which goethite (${\alpha}-FeOOH$) particles are the main constituents. The phases, microstructures and magnetic properties of these particles were studied using XRD, FE-SEM and VSM. The precursor solution consisted of $NiSO_4{\cdot}xH_2O$, $ZnSO_4{\cdot}xH_2O$, goethite and D.I. water werereacted at four different temperatures (50, 70, 90, $100^{\circ}C$) to generate four differently precipitated particles respectively. During the co-precipitation reaction, the pH of the solution was maintained at 8.0 using NaOH. The particles co-precipitated and calcined at a temperature of $700^{\circ}C$, exhibited a rod-shape similar to its original goethite, which means that the shape of Ni-Zn ferrite particles can be topotactically controlled by the goethite. The particles synthesized at 70 and $90^{\circ}C$ have a saturation magnetization of 29 and 35 emu/g respectively; representing better values than the ones synthesized at the 50 and $100^{\circ}C$, in which some second phases such as $Fe_2O_3$ were observed.

Growth mechanism and controlled synthesis of single-crystal monolayer graphene on Germanium(110)

  • 심지니;김유석;이건희;송우석;김지선;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.368-368
    • /
    • 2016
  • 그래핀(Graphene)은 탄소 원자가 6각 구조로 이루진 2차원 알려진 물질 중 가장 얇은(0.34 nm) 두께의 물질이며 그 밴드구로조 인해 우수한 전자 이동도($200000cmV^{-1}s^{-1}$)를 가지고 있며, 이외에도 기계적, 화학적으로 뛰어난 특성을 가진다. 대면적화 된 그래핀을 성장시키기 위한 방법으로는 화학적 기상 증착법(Chemical Vapor Deposition)이 있다. 하지만 실제 여러 전이금속에서 합성되는 그래핀은 다결정으로, 서로 다른 면 방향을 가진 계면에서 전자의 산란이 일어나며, 고유의 우수한 특성이 저하되게 된다. 따라서 전자소재로 사용되기 위해서는 단결정의 대면적화 된 그래핀에 대한 연구가 지속적으로 이루어지고 있다. 앞서의 두 문제점 중, 단결정의 그래핀 합성에 크게 영향을 미치는 요인으로는 크게 합성 온도, 촉매 기판의 탄소 용해도, 촉매 표면에서의 탄소 원자의 확산성이 있다. 본 연구에서는 구리, 니켈, 실리콘에 비해 탄소 용해도가 낮으며, 탄소 원자의 높은 확산성으로 인해 단결정의 단층 그래핀을 합성에 적합하다고 보고된 저마늄(Germanium) 기판을 사용하여 그래핀을 합성하였다. 단결정의 그래핀을 성장시키기 위해 메탄(Methane; $CH_4$)가스의 주입량과 수소 가스의 주입량을 제어하여 성장 속도를 조절 하였으며, 성장하는 그래핀의 면방향을 제어하고자 하였다. 표면의 산화층(Oxidized layer)을 제거하기 위하여 불산(Hydrofluoric acid)를 사용하였다. 불산 처리 후 표면의 변화는 원자간력현미경(Atomic force microscopipe)을 통하여 분석하였다. 합성된 그래핀의 특성을 저 에너지 전자현미경(Low energy electron microscopy), 광전자 현미경(Photo emission electron microscopy), 라만 분광법(Raman spectroscopy), 원자간력현미경(Atomic force microscopy)와 투과전자현미경 (transmission electron microscopy)을 이용하여 기판 표면의 구조와 결정성을 분석하였다.

  • PDF

Synthesis and characterization of amorphous NiWO4 nanostructures

  • Nagaraju, Goli;Cha, Sung Min;Yu, Jae Su
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.392.1-392.1
    • /
    • 2016
  • Nowadays, research interest in developing the wearable devices are growing remarkably. Portable consumer electronic systems are becoming lightweight, flexible and even wearable. In fact, wearable electronics require energy storage device with thin, foldable, stretchable and conformable properties. Accordingly, developing the flexible energy storage devices with desirable abilities has become the main focus of research area. Among various energy storage devices, supercapacitors have been considered as an attractive next generation energy storage device owing to their advantageous properties of high power density, rapid charge-discharge rate, long-cycle life and high safety. The energy being stored in pseudocapacitors is relatively higher compared to the electrochemical double-layer capacitors, which is due to the continuous redox reactions generated in the electrode materials of pseudocapacitors. Generally, transition metal oxides/hydroxide (such as $Co_3O_4$, $Ni(OH)_2$, $NiFe_2O_4$, $MnO_2$, $CoWO_4$, $NiWO_4$, etc.) with controlled nanostructures (NSs) are used as electrode materials to improve energy storage properties in pseudocapacitors. Therefore, different growth methods have been used to synthesize these NSs. Of various growth methods, electrochemical deposition is considered to be a simple and low-cost method to facilely integrate the various NSs on conductive electrodes. Herein, we synthesized amorphous $NiWO_4$ NSs on cost-effective conductive textiles by a facile electrochemical deposition. The as-grown amorphous $NiWO_4$ NSs served as a flexible and efficient electrode for energy storage applications.

  • PDF

고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구 (Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries)

  • 차은희;김영운;임수아;임재욱
    • 전기화학회지
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2015
  • 삼성분 칼코게나이드 화합물인 황화 주석 저마늄 ($Sn_xGe_{1-x}S$) 합금 나노입자를 메틸 주석 $(Sn(CH_3)_4$, tetramethyl tin, TMT) 메틸 저마늄 $(Ge(CH_3)_4$, tetramethyl germanium, TMG), 황화수소 ($H_2S$, hydrogen sulfide) 혼합 가스의 레이저 광분해 반응법으로 합성할 수 있으며, 이때 반응기 안의 가스 혼합비율에 따라 나노입자의 주석과 저마늄의 조성비를 조절할 수 있었다. 조성비를 가변시킨 나노입자는 모두 결정성을 갖게 만들 수 있었으며, 리튬 이온 전지의 음극소재로서 우수한 특성을 보여주었다. 조성비에 따라 특성을 조사결과, 황화저마늄은 70 사이클 후 최대 1200 mAh/g의 가장 높은 방전용량을 갖는 것과, 주석 성분 함량이 클수록 높은 충방전률에서 용량 유지가 더 잘 됨을 확인하였다. 이와 같은 우수한 효율의 황화물 합금 나노입자의 새로운 대량 합성법은 고성능 에너지 변환 소재 실용화에 기여할 것으로 예상된다.

3차 아민계 쇄연장제를 이용한 폴리우레탄 수지의 합성과 기계적, 염색 특성 (Synthesis and Mechanical, Dyeable Properties of Polyurethane with the Chain Extender Containing Tertiary Amine)

  • 노시태;김평준;정창남
    • 공업화학
    • /
    • 제7권2호
    • /
    • pp.341-349
    • /
    • 1996
  • 폴리우레탄 수지의 염색성을 향상시키기 위하여 염착좌석을 갖는 저분자량의 디올류를 쇄연장제로 활용하였다. 쇄연장제와 폴리올의 종류를 변화시키고, 또한 하드세그멘트 (HS)/소프트세그멘트 (SS) 비율을 변화시키면서 폴리우레탄 수지를 합성하였다. HS/SS가 1.4이고, dimethylolpropionic acld(DMPA), N-butyldiethanolamine(BDEA)를 염착좌석용 쇄연장제(DCE)로 활용한 경우 반응의 불균일성으로 인하여 기계적 물성이 좋지 못하였으며, 특히 에스테르계 폴리올인 poly(butylene/ethylene adipate) glycol(PBEAG)로 합성한 경우 내가수분해성이 현저히 저하되었다. 그러나 DCE로 N-methyldiethanol amine(MDEA)를 사용하고 HS/SS를 1.3으로 조절한 경우 기계적 물성과 염색성이 향상되었으며, MDEA를 선형 쇄연장제(CE)인 1,4-butanediol(1,4-BD)과 에테르형 폴리올인 poly[oxyteramethylene] glycol(PTMG)과 반응시킨 경우 기계적 물성과 내가수분해성이 현저하게 향상되었다. 특히 분자설계적 측면에서 DCE를 HS와 SS내의 배분과 1,6-hexanediol(1,6-HD) 및 neopentylglycol(NPG)과의 공쇄연장으로 초기탄성률, 인장강도, 신장률을 제어 할 수 있음을 알 수 있다.

  • PDF

Irreversible luminescence from graphene quantum dots prepared by the chain of oxidation and reduction process

  • Jang, Min-Ho;Ha, Hyun Dong;Lee, Eui-Sup;Kim, Yong-Hyun;Seo, Tae Seok;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.222.1-222.1
    • /
    • 2015
  • Recently, graphene quantum dots (GQDs) have attracted great attention due to various properties including cost-effectiveness of synthesis, low toxicity, and high photostability. Nevertheless, the origins of photoluminescence (PL) from GQDs are unclear because of extrinsic states of the impurities, disorder structures, and oxygen-functional groups. Therefore, to utilize GQDs in various applications, their optical properties generated from the extrinsic states should be understood. In this work, we have focused on the effect of oxygen-functional groups in PL of the GQDs. The GQDs with nanoscale and single layer are synthesized by employing graphite nanoparticles (GNPs) with 4 nm. The series of GQDs with different amount of oxygen-functional groups were prepared by the chain of chemical oxidation and reduction process. The fabrication of a series of graphene oxide QDs (GOQDs) with different amounts of oxygen-contents is first reported by a direct oxidation route of GNPs. In addition, for preparing a series of reduced GOQDs (rGOQDs), we employed the conventional chemical reduction to GOQDs solution and controlled the amount of reduction agents. The GOQDs and rGOQDs showed irreversible PL properties even though both routes have similar amount of oxyen-functional groups. In the case of a series of GOQDs, the PL spectrum was clearly redshifted into blue and green-yellowish color. On the other hand, the PL spectrum of rGOQDs did not change significantly. By various optical measurement such as the PL excitation, UV-vis absorbance, and time-resolved PL, we could verify that their PL mechanisms of GOQDs and rGOQDs are closely associated with different atomic structures formed by chemical oxidation and reduction. Our study provides an important insights for understanding the optical properties of GQDs affected by oxygen-functional groups. [1]

  • PDF

B 임파구의 분화 (B-cell Differentiation)

  • 양만표;이창우;권종국;장곡천독언
    • 한국임상수의학회지
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 1991
  • The B-lymphocyte differentiation from committed B-cell progenitors to antibody-secreting cells was discussed. B-cell progenitors derived from hematopoietic stem cells undergo the rearrangement of immunoglobulin(Ig) gene. The earliest cells as B-cell precursors have cytoplasmic Is(${\mu}$ chain). The entire Is molecule is expressed on the surface after synthesis of L chain. The resting B cells(Go stage) stimulated by binding antigen via Ig-receptors are activated(G$_1$ stage) and followed by proliferation(S stage), coupled with further selection(affinity maturation. class switch). The production of antibody against a particular antigen depends on the activation of B cells with surface Is capable of reacting with that antigen. This process does not occur in isolation but is controlled by helper and suppressor T cells and antigen presenting cells(APC). The mechanism of T cell-dependent B-cell response for production of antibody is largely explained by the cell to cell cooperation and soluble helper factors of T cells. 1) The antigen specific B cells and helper T cells are linked by Is-receptors, leading to the delivery of helper signals to the B cells. 2) Helper T cells recognize the processed antigen-derived peptides with the MHC class II molecules(la antigen) and is stimulated to secrete B-cell proliferation and differentiation factors which activate B cells of different antigenic specificity. The two models are shown currently 1) At low antigen concentration, only the antigen-specific B cell binds antigen and presents antigen-derived peptides with la molecules to helper T cells, which are stimulated to secrete cytokines(IL-4, IL-5, etc.) and 2) At high antigen concentration, antigen-derived peptides are presented by specific B cells, by B cells that endocytose the antigens, as well as by APC Cytokines secreted from helper T cells also lead to the activation of B cells and even bystander B cells in the on- vironmment and differentiate them into antibody-secreting plasma cells.

  • PDF

근골격계 통증성 질환에 대한 온침의 임상 연구 고찰 -계통적 고찰- (Review of Clinical Trials on Warming Acupuncture for Musculoskeletal Pain Diseases -A Systematic Review-)

  • 정지윤;최도영;우현수;강성길
    • Journal of Acupuncture Research
    • /
    • 제26권4호
    • /
    • pp.11-18
    • /
    • 2009
  • Objectives : The objective of this review was to evaluate clinical trials of warming acupuncture for musculoskeletal pain diseases, to assess the methodologic quality of the trials and determine whether low-quality trials are associated with positive outcomes, to document adverse effects and to identify the effectiveness of the warming acupuncture. Methods : Seven databases and the Journal ZHONGGUO ZHENJIU(中國鍼灸) published between 2004-2008 were searched. Korean and Chinese randomized trials were evaluated for methodologic quality using the modified Jadad scale. Outcome measurements were pain, function and global improvement. The best-evidence synthesis was performed to determine the strength of evidence by control group. Results : Six clinical trials representing 564 patients with musculoskeletal pain diseases were identified. For pain and function, there was moderate evidence that warming acupuncture is more effective than manual acupuncture. For patient global assesment, there was limited evidence that warming acupuncture is more effective than manual acupuncture. However, for function, there was inconclusive evidence that warming acupuncture is more effective than acupuncture with TDP or western medicine or acupoint-injection treatment. Conclusions : The evidence suggests that warming acupuncture is more effective for musculoskeletal pain diseases than manual acupuncture, acupuncture with TDP, western medicine and acupoint-injection treatment. But the evidence is moderate to inclusive due to the low methodologic quality of the trials. Further clinical trials with high methodologic quality is required to investigate the effectiveness of warming acupuncture.

  • PDF