• Title/Summary/Keyword: controlled horticulture

Search Result 137, Processing Time 0.027 seconds

Effect of Drainpipe Height and Media Composition on Growth and Yield of Soilless Cultivated Cut Rose in Container Culture (절화장미 용기재배 시 배수구 높이, 배지조성이 생육과 수량에 미치는 영향)

  • Choi, Gyeong-Lee;Cho, Myeong-Whan;Cheong, Jae-Woan;Roh, Mi-Young;Rhee, Han-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • The objective of this study was to determine the effect of different height of drainpipe and growing media soilless cultivated cut rose in container culture. Two experiment were to examine the effect of the drainpipe height and media composition on yield and quality of cut rose, Four different drainpipe height (0, 3, 6, 9 cm) were treated to determine of optimal container type. Yield was the highest at 3 cm drainpipe height, but quality was not significantly affected by drainpipe height. Survival rate of rose was 100%, 100%, 92%, and 92%, respectively. Two different drainpipe height (0, 3 cm) and 7 media composition (pure coir and pelite, and mixed with two media 3 : 1, 2 : 1, 1 : 1, 1 : 2, 1 : 3 v/v) was treated to determine of media composition related to drainpipe height. The supply of nutrient solution was controlled by the signal of water potential at -5 kPa using frequency domain reflectometry (FDR) sensor in mixed coir with pelite 3 : 1, 1 : 1, 1 : 3 (v/v), respectively. Irrigation frequency reduced in high ratio of coir media and 3 cm height of drainpipe. Quality of cut rose except for flower weight and yield until 2nd harvest was not significantly affected by drainpipe height, but yield after 3rd was higher at 3 cm than 0 cm height of darinpipe. In the media composition, yield and qulity of cut rose was increased at high ratio of coir media.

Study on Controlled Horticulture Farmers' Attitude of Energy-Saving Facilities using the IPA method (시설원예 농가의 에너지 절감시설에 대한 만족도 분석: IPA방법을 이용하여)

  • Kim, Yean-Jung;Han, Hye-Sung;Choi, Chil-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6114-6125
    • /
    • 2014
  • This paper analyzed the issues related to focus on farmers behaviors of energy saving facilities. This study conducted questionnaire and field surveys of controlled horticulture farmers and economic analysis using an IPA(Importance-Performance Analysis) matrix. According to the research results, the performance level was low on average ranging from 2.33 to 2.56 in a five point Likert-scale on greenhouse mandarin and grape-related facilities. On the other hand, the importance levels were high in the mean rating from 2.69 to 4.8. The results show that energy loss reduction of complementary facility and alternative energy supply support for low cost implementation are more important in terms of the respondents concerns than performance quadrant III. Therefore, it is important to provide financial support to energy-saving facilities to promote the use of energy efficiency improvement. In addition, the government should invest continuously in research and development.

Effect of Seasonal Distribution Temperature on Storability of Modified Atmosphere Packaged Baby Leaf Beet (계절별 수송 온도가 MA 포장한 어린잎 비트의 저장성에 미치는 영향)

  • Choi, In-Lee;Han, Su Jung;Kim, Ju Young;Ko, Young-Wook;Kim, Yongduk;Hwang, Myung-Keun;Yu, Wanggun;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • The effects of distribution temperature due to season all changes on quality and storability of baby leaf beet (Beta vulgaris L.) was examined in modified atmosphere (MA) packages. The beet leaf had been harvested at the 10 cm leaf length stage and packaged with an oxygen transmission rate (OTR) film of $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ and then held at 4 different distribution temperatures which were $-2^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$, or $30^{\circ}C$ for 5 hrs and then stored for 18 days at $8^{\circ}C$. The loss of fresh weight of packged baby leaf beet was lowest at the $4^{\circ}C$ treatment, and below 0.6% in all distribution temperature treatments. The atmosphere composition in packages did not show any significant differences among treatments. The oxygen conc. was the highest at 18.0% after the $4^{\circ}C$ treatment, carbon dioxide conc. showed the maximum value of 4% at the $30^{\circ}C$ and $-2^{\circ}C$ treatments, and ethylene conc. was highest at the $10^{\circ}C$ treatment after 10 days in storage. The hardness was the highest at the $4^{\circ}C$ treatment on the final storage day. The $4^{\circ}C$ treatment showed the highest visual quality and the lowest off-odor and aerobic plate count. Therefore, it is necessary to establish a low-temperature distribution system which is controlled under $4^{\circ}C$, because the baby leaf beet's storability and microbial growth are effected even during a short time of 5 hrs during the distribution process.

Analysis of Heat Transmission Characteristics through Air-Inflated Double Layer Film by Using Thermal Resistance Equation (열저항식을 이용한 공기막 이중필름의 관류전열량 특성 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Lee, Sang-Ho;Yun, Nam-Kyu;Yoo, Ju-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.316-321
    • /
    • 2013
  • This study was carried out to analyze heat transfer characteristics and heat flow through air-inflated double layer PO film with thermal resistance method. The experiments was conducted in the laboratory controlled air temperature between 258.0 K and 278.0 K. The experimental materials were made up two layers PO film and an inflated-air layer. The thickness of air-inflated layer was fixed at 3 types of 110, 175, 225 mm. The electrical circuit analogy for heat transfer by conduction, radiation and convection was introduced. Experimental data shows that the dominant thermal resistance in heat transfer through the air-inflated double layer film was convection. Calculation errors were 1.1~18.5 W for heat flow. In result, the method of thermal resistance could be introduced for analysis of heat flow characteristics through air-inflated double layer film.

The Effects of Ozone on Photosynthesis, Antioxidative Enzyme Activity and Leaf Anatomical Response in the Indoor Plants and Japanese Red Pine (실내식물과 소나무의 오존에 대한 광합성 능력, 항산화 효소의 활성, 해부학적 반응)

  • Lee, Ju Young;Je, Sun Mi;Lee, Seoung Han;Woo, Su-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.601-607
    • /
    • 2013
  • The purpose of this study was to identify the effects of ozone pollution on the one woody species and two indoor plants in controlled environment. Pinus densiflora, Spathiphyllum patinii and Epipremnum aureum seedlings were exposed in both control and ozone chambers to investigate photosynthetic rate, water use efficiency, antioxidative enzyme activities such as GR(Glutathione reductase) and APX(Ascorbate peroxidase) activity and leaf anatomical response. Ozone was fumigated 8 hours for a day with 30 ppb concentration for 50 days. Pinus densiflora seedlings showed no significant difference on photosynthetic rate, water use efficiency, antioxidant enzyme activity during ozone exposure. Ozone concentration (30 ppb in this study) is not high enough to generate ozone damage on Pinus densiflora species. In contrast, ozone generally altered photosynthetic rate, antioxidant enzyme (especially GR) activity and leaf anatomy in two indoor species (Spathiphyllum patinii and Epipremnum aureum) exposed in ozone chamber were significantly differ from those of control in every measurement. These data suggest that two indoor species(Spathiphyllum patinii and Epipremnum aureum) are more sensitive to ozone than Pinus densiflora.

Characteristics of Watermelon Mosaic Virus Transmission Occurring in Korean Ginseng (인삼에서 발생하는 수박모자이크바이러스의 감염 특성)

  • Choi, Seung-Kook;Cho, In-Sook;Chung, Bong-Nam;Kim, Mi-Kyeong;Jung, Won-Kwon;Choi, Gug-Seoun
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.206-210
    • /
    • 2014
  • Korean ginseng (Panax ginseng) is the most popular herb for medical purpose in Korea. Recently, viral diseases from Korean ginseng showing various degrees of severe mottling, variegation and mosaic symptoms have caused quantity losses of Korean ginseng in a large number of farms. Watermelon mosaic virus (named WMV-gin) was identified as a causal agent for the disease of Korean ginseng. Interestingly, WMV-gin failed to infect both Korean ginseng plant and susceptible host species including cucurbitaceous plants by mechanical inoculation. However, WMV-gin could successfully infect Korean ginseng by transmission of two aphid species (Myzus persicae and Aphis gossypii). It is likely that transmission of WMV-gin was done by both the aphid species during feeding behavior of the two aphid species on Korean ginseng, though the aphids dislike feeding in Korea ginseng. Similarly, a strain of WMV (WMV-wm) isolated from watermelon was transmitted successfully to Korean ginseng plant by the two aphid species, but not by mechanical inoculations. Transmission assays using M. persicae and A. gossypii clearly showed both WMV-gin and WMV-wm were not transmitted from infected Korean ginseng plant to cucurbit species that are good host species for WMV. These results suggest WMV disease occurring in Korean ginseng plant can be controlled by ecological approaches.

Photosynthesis, Antioxidant Enzyme, and Anatomical Difference of Sedum kamtschaticum and Hosta longipes to Ozone (오존이 기린초와 비비추의 광합성, 항산화효소, 해부학적 구조에 미치는 영향)

  • Cheng, Hyo-Cheng;Woo, Su-Young;Lee, Seong-Han;Baek, Saeng-Geul
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.394-402
    • /
    • 2010
  • The objective of this study was to identify the effects of ozone on the two species in controlled environment. $Sedum$ $kamtschaticum$ and $Hosta$ $longipes$ were exposed in both control and ozone chamber to investigate photosynthesis, antioxidant enzyme activity, visible damage, the number and the size of stomata and the plastogloubuli. Ozone was fumigated in the concentration of $200{\mu}g{\cdot}kg^{-1}$ for 8 hours in a day (from 08:00 AM to 04:00 PM). Firstly, net photosynthesis of two species was decreased after ozone fumigation. Secondly, glutathione reductase activities showed significant difference between control and ozone treatment. Thirdly, visible symptoms of leaves were expressed such as chlorosis, necrosis and decoloration. Also, the size of stoma was significantly decreased in ozone-exposed plants. Furthermore, the intercellular space of $Hosta$ $longipes$ showed increased phenomenon because the mesophyll was collapsed. The number and the size of the plastogloubuli were significantly larger in ozone stress.

The Effects of Different Degrees of Defoliation on 'Seolhyang' Strawberry's Fruit Characteristics, Plant Growth and Changes in Nonstructural Carbohydrates (적엽 수준이 '설향' 딸기의 과실 특성, 식물체 생육 및 탄수화물 변화에 미치는 영향)

  • Lee, Sang Woo;Yun, Jae Gill;Hong, Jeum Kyu;Choi, Ki Young;Park, Soo Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • This study aimed to examine the effects of different degrees of defoliation during harvest season on hydroponically cultured 'Seolhyang' strawberry's fruit characteristics, plant growth, and changes in nonstructural carbohydrates, and find an effective defoliation method. On November 29, 2013, some of the 'Seolhyang' leaves were non-defoliated and the others were defoliated remaining 9 and 5 leaves. The number of fruits and fruit weight were not significantly different in the first flower cluster but in the second, third, and fourth flower clusters decreased as the level of defoliation increased. The soluble solids content and acidity of fruits decreased in all the clusters as the level of defoliation increased. The leaf area and leaf dry weight of strawberry plant in all the treatment groups decreased from January to March and root dry weight sharply decreased during February. Thereafter, during April, the growth of plant increased. As defoliation increased, the dry weight of fruits, flower clusters, crowns, and roots decreased, and during late growing period, difference in dry weight according to the degree of defoliation was considerable. The content of carbohydrate was greater in the leaves than the fruits excepting January 30 and February 28, 2014 and in the case of strawberry plant that continuously produce fruits, the content of carbohydrate decreased in the leaves and roots. As defoliation increased, the content of carbohydrate in fruits, flower clusters, crowns, and roots decreased. Defoliation for strawberry plants is carefully done during harvest season. Twelve leaves during December and 14 leaves from January to March should be maintained, and in April when the number of leaves increases, old leaves should be defoliated.

Microbubbles Increase Glucosinolate Contents of Watercress (Nasturtium officinale R. Br.) Grown in Hydroponic Cultivation (마이크로버블을 이용한 수경재배 물냉이의 글루코시놀레이트 함량 증대)

  • Bok, Gwonjeong;Choi, Jaeyun;Lee, Hyunjoo;Lee, Kwangya;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.158-165
    • /
    • 2019
  • The effects of microbubbles on glucosinolate accumulation and growth of watercress (Nasturtium officinale R. Br.) were investigated. Watercress plant at the 4th mature leaf stage (2 weeks old) were exposed to microbubbles or non-microbubbles generated in an Otsuka-house nutrient solution for 3 weeks in a controlled environment culture room. Stem length of the watercress grown under the microbubbles was 41% shorter than that of the non-microbubbles, showing significantly different. However, shoot fresh and dry weights, root length, leaf length, leaf width, SPAD, and quentum yield of the watercress were not significantly different between treatments. Glucoiberin, glucobrassicin, gluconapin, gluconasturtiin of the watercress grown under microbubbles, excepted for 4-methoxyglucobrassicin, were significantly higher than those of the watercress grown in non-microbubbles. In addition, watercress grown under microbubbles for 3 weeks contained 85% (${\mu}mol/g$ DW) and 65% (${\mu}mol/plant$) more total glucosinolate, respectively. Results indicated that microbubbles generated in a deep flow technique hydroponics system could increase the accumulation of glucosinolate without growth reduction.

Implement of Web-based Remote Monitoring System of Smart Greenhouse (스마트 온실 통합 모니터링 시스템 구축)

  • Dong Eok, Kim;Nou Bog, Park;Sun Jung, Hong;Dong Hyeon, Kang;Young Hoe, Woo;Jong Won, Lee;Yul Kyun, Ahn;Shin Hee, Han
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Growing agricultural products in greenhouses controlled by creating suitable climatic conditions and root zone of crop has been an important research and application subject. Appropriate environmental conditions in greenhouse are necessary for optimum plant growth improved crop yields. This study aimed to establish web-based remote monitoring system which monitors crops growth environment and status of crop on a real-time basis by applying to greenhouses IT technology connecting greenhouse equipment such as temperature sensors, soil sensors, crop sensors and camera. The measuring items were air temperature, relative humidity, solar radiation, CO2 concentration, EC and pH of nutrient solution, medium temperature, EC of medium, water content of medium, leaf temperature, sap flow, stem diameter, fruit diameter, etc. The developed greenhouse monitoring system was composed of the network system, the data collecting device with sensors, and cameras. Remote monitoring system was implemented in a server/client environment. Information on greenhouse environment and crops is stored in a database. Items on growth and environment is extracted from stored information, could be compared and analyzed. So, A integrated monitoring system for smart greenhouse would be use in application practice and understanding the environment and crop growth for smart greenhouse management. sap flow, stem diameter and pant-water relations