• Title/Summary/Keyword: controlled horticulture

Search Result 137, Processing Time 0.024 seconds

Effect of Histone Deacetylase Inhibitors on Differentiation of Human Bone Marrow-derived Stem Cells Into Neuron-like Cells

  • Jang, Sujeong;Park, Seokho;Cho, Hyong-Ho;Yang, Ung;Kang, Maru;Park, Jong-Seong;Park, Sah-Hoon;Jeong, Han-Seong
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.133-141
    • /
    • 2019
  • Mesenchymal stem cells (MSCs) are known to differentiate into multiple lineages, making neurogenic differentiation an important target in the clinical field. In the present study, we induced the neurogenic differentiation of cells using histone deacetylase (HDAC) inhibitors and studied their mechanisms for further differentiation in vitro. We treated cells with the HDAC inhibitors, MS-275 and NaB; and found that the cells had neuron-like features such as distinct bipolar or multipolar morphologies with branched processes. The mRNA expressions encoding for NEFL, MAP2, TUJ1, OLIG2, and SYT was significantly increased following HDAC inhibitors treatment compared to without HDAC inhibitors; high protein levels of MAP2 and Tuj1 were detected by immunofluorescence staining. We examined the mechanisms of differentiation and found that the Wnt signaling pathway and downstream mitogen-activate protein kinase were involved in neurogenic differentiation of MSCs. Importantly, Wnt4, Wnt5a/b, and Wnt11 protein levels were highly increased after treatment with NaB; signals were activated through the regulation of Dvl2 and Dvl3. Interestingly, NaB treatment increased the levels of JNK and upregulated JNK phosphorylation. After MS-275 treatment, Wnt protein levels were decreased and GSK-3β was phosphorylated. In this cell, HDAC inhibitors controlled the non-canonical Wnt expression by activating JNK phosphorylation and the canonical Wnt signaling by targeting GSK-3β.

Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

  • Lee, DongHoon;Lee, KyouSeung;Cho, Yong Jin;Choi, Jong-Myoung;Kim, Hak-Jin;Chung, Sun-Ok
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.501-508
    • /
    • 2012
  • Reducing carbon dioxide ($CO_2$) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where $CO_2$ is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, $CO_2$ concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse $CO_2$ enrichment based on accurate monitoring of the added $CO_2$ can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required $CO_2$ concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied $CO_2$. RPI for a greenhouse controlled at lower set point of $CO_2$ concentration (500 ${\mu}mol{\cdot}mol^{-1}$) was greater than that of greenhouse at higher set point (800 ${\mu}mol{\cdot}mol^{-1}$). Evaluation tests to optimize $CO_2$ enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of $CO_2$ but also to maintain the crop profitability.

Brassica rapa Sec14-like protein gene BrPATL4 determines the genetic architecture of seed size and shape

  • Kim, Joonki;Lee, Hye-Jung;Nogoy, Franz Marielle;Yu, Dal-A;Kim, Me-Sun;Kang, Kwon-Kyoo;Nou, Illsup;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • Seed size traits are controlled by multiple genes in crops and determine grain yield, quality and appearance. However, the molecular mechanisms controlling the size of plant seeds remain unclear. We performed functional analysis of BrPATL4 encoding Sec14-like protein to determine the genetic architecture of seed size, shape and their association analyses. We used 60 $T_3$ transgenic rice lines to evaluate seed length, seed width and seed height as seed size traits, and the ratios of these values as seed shape traits. Pleiotropic effects on general architecture included small seed size, erect panicles, decreased grain weight, reduced plant height and increased sterility, which are common to other mutants deficient in gibberellic acid (GA) biosynthesis. To test whether BrPATL4 overexpression is deleterious for GA signal transduction, we compared the relative expression of GA related gene and the growth rate of second leaf sheath supplied with exogenous $GA_3$. Overexpression of BrPATL4 did not affect GA biosynthesis or signaling pathway, with the same response shown under GA treatment compared to the wild type. However, the causal genes for the small seed phenotype (D1, SRS1, and SRS5) and the erection of panicles showed significantly decreased levels in mRNA accumulation compared to the wild type. These results suggest that the overexpression of BrPATL4 can control seed size through the suppression of those genes related to seed size regulation. Although the molecular function of BrPATL4 is not clear for small seed and erect panicles of BrPALT4 overexpression line, this study provides some clues about the genetic engineering of rice seed architecture.

The Change in the Properties of Seeding Pad by the Oil Palm EFB Fiber (오일팜 EFB 섬유 적용에 따른 육묘패드 특성변화)

  • Kim, Dong-Seop;Hendrasetiafitri, Citasari;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.15-22
    • /
    • 2015
  • The crop production technologies keep in improving and the cultivation becomes more standardization owing to the significant developments of various agricultural materials. The artificial soil and base system for root could be one of the major technologies for the modern cultivation especially for controlled horticulture. Although the perlite, cocopeat, and peat moss are the major components of the artificial soil and are broadly used for various application, there is a great need for the new alternative materials for overcoming the low nutrition and the possible shortage of raw materials. In this study, the application of oil palm EFB fiber as an alternative materials for artificial soil especially for the seeding pad components was evaluated. The changes in the structural properties and the functional properties such as moisture holding properties were compared by laboratory produced seeding pads with different mixture of oil palm EFB fiber. The addition of fibrillated EFB fiber resulted in the significant increase in durability of the seeding pad, which showed the possible application of EFB fiber to the seeding pad instead of the wood fiber (UBKP). The moisture holding properties and the germination condition characteristics of the EFB fiber showed the slight less than those of the cocopeat, which require more sophisticated study for improving the functional properties of seeding pad made of the EFB fiber.

Growth and Soil Chemical Property of Small Apple Trees as Affected by Organic Fertilizers and Mulch Sources (비료원과 멀칭재료에 따른 사과 유묘의 생장 및 토양이화학성 변화)

  • Choi, Hyun-Sug;Rom, Curt;Lee, Youn;Cho, Jung-Lai;Jung, Seok-Kyu;Jee, Hyeong-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • BACKGROUND: This study was conducted to evaluate the effects of the fertilizer sources and ground cover mulches on nutrient release, growth, and photosynthesis in small one-year-old apple (Malus ${\times}$ domestica Borkh.) trees in controlled conditions. METHODS AND RESULTS: Treatments included no fertilizer (NF), commercial organic fertilizer (CF), and poultry litter (PL) for fertilizer treatments, and wood chips (WC), shredded paper (SP), green compost (GC), and grass clippings (GR) for cover mulch treatments. All treatments were applied proportionally based on the volume ratio equivalent to the soil. CF, PL, and GR treatments that had optimum carbon (C) and nitrogen (N) ratios (less than 30:1) for N mineralization through the microbes released the greatest $NH_4^+$ concentrations in the pot media at 90 days after the treatments, but GC mulch with the optimum C:N ratio did not. CF-, PL- and GR-treated plants had the largest leaf area, thickest stem diameter, longest shoot extension, and greater dry matter production. CONCLUSION(s): CF and PL showed an suitable organic nutrient source for improving plant growth in an orchard. Interestingly, GR also could be a nutrient source for tree growth, if vegetation competition is controlled by maintaining vegetation height and recycling enough grass clippings to the soil in an orchard.

Effects of Delayed CA Treatment on Fruit Quality of 'Fuji' Apples During Storage (지연 Controlled Atmosphere(CA)저장이 저장 중 '후지' 과실의 품질에 미치는 영향)

  • Kweon, Hun-Joong;Choi, Dong Geun;Lee, Jinwook;Jung, Hee-Young;Choung, Myoung-Gun;Kang, In-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.202-208
    • /
    • 2013
  • This study was conducted to investigate the effect of delayed controlled atmosphere (CA) storage on fruit quality and the incidence of storage disorders during CA storage of 'Fuji' apples (Malus x domestica Borkh.). In the first year of experiment, 'Fuji' apples showed 40% of watercore disorder at the commercial harvest time (Oct. 22). Twenty days delayed CA storage caused to develop the incidence of flesh browning while 30 days delayed CA storage did not. In the second year of experiment, watercore was increased with delaying harvest time. As the estabilishment of delayed CA storage was delayed, the incidence of flesh browning increased at 10 to 30 days delayed CA storage but 40 days delayed CA storage did not have any flesh browning incidence. Respiration rate increased with extending the storage duration. Delayed CA storage reduced respiration rate but was not different compared to the rapid CA. Ethylene production rate was lower in delayed CA storage than in cold storage but higher in delayed CA storage, compared to rapid CA storage. Titratable acidity was lower in delayed CA storage as CA storage progressed. Firmness was not different between rapid CA storage and delayed CA storage after 8 months of CA storage. Therefore, the results indicate that delayed CA storage should be a promising approach to reduce the risk development of flesh browning and watercore during CA storage of 'Fuji' apples.

Colors and Sizes of Insect Screen Net Influence Physical Control of Bemisia tabaci and Frankliniella occidentalis under Controlled Environments (환경제어 조건에서 방충망 색과 크기가 담배가루이 및 꽃노랑총채벌레의 물리적 방제에 미치는 영향)

  • Jung, Chung-Ryul;Yoon, Jung-Beom;Kim, Kwang-Ho;Lee, Guang-Jae;Heo, Jeong-Wook;Kim, Hyun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.46-54
    • /
    • 2016
  • BACKGROUND: The tobacco whitefly(Bemisia tabaci Gennadius) and western flower thrips(Frankliniella occidentalis Pergande) seriously damaged to several greenhouse crops and transmitted plant viruses such as the Tomato Yellow Leaf Curl Virus(TYLCV) and Tomato Spotted Wilt Virus(TSWV). Objective of this study was to elucidate exclusion effects of insect screen nets by various hole sizes and colors for control of the two insect pests in controlled environments such as a closed plant production system.METHODS AND RESULTS: The exclusion effects to various hole sizes of three other colors with 30 individuals of two insect pests was evaluated. B. tabaci was not showed not difference to different colors and sizes. F. occidentalis showed that 0.2 mm black screen was the most effective exclusion than other colors of 0.6 and 0.8 mm.CONCLUSION: The two insects were different reponses to various hole sizes of white and other color screen nets. It was proved that the 0.4 mm white screen net used in this experimental condition was suitable for exclusion of B. tabaci and 0.2 mm black forF. occidentalis.

Changes of Tree Growth and Fruit Quality of "Yumi" Peach under Long-Term Soil Water Deficit

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Chung, Kyeong Ho;Choi, In Myung;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • Purpose: This paper presents the effects of soil drought stress during the growing season and pre-harvest period on tree growth and fruit quality of "Yumi" peach, an early season cultivar. Methods: Soil drought stresses were treated with four levels of -30, -50, -60, and -70 kPa during long term (LT) and short term (ST). For LT treatments, soil water was controlled for nine weeks from May 1 to July 5, which was assumed as the full growing season. For ST treatments, soil water was controlled for four weeks from June 10 to July 5, which was assumed as the pre-harvest season. Tree growth and leaf photosynthesis were measured, and fruit characteristics such as fruit weight and diameter, soluble solid and tannin contents, and harvest date were investigated. Results: Soil water deficit treatments caused a significant reduction in tree growth, leaf photosynthesis, and fruit enlargement. LT water stress over -60 kPa during the full growing season caused significant reduction in tree growth, including shoot length, trunk girth, leaf photosynthesis, and fruit enlargement. ST water stress over -60 kPa during the pre-harvest period also induced significant reduction in leaf photosynthesis and fruit enlargement, while tree growth was not reduced. In terms of fruit quality, water stress over -50 kPa significantly reduced fruit weight, increased soluble solid and tannin contents, and delayed harvest time in both LT and ST treatments. Conclusions: As a result, it is assumed that LT water stress over -60 kPa can reduce both tree growth and fruit enlargement, whereas ST water stress over -50 kPa can reduce fruit enlargement without reducing tree growth. From an agricultural perspective, moderate water deficit like -50 kPa treatments could have positive effects, such increased fruit soluble solid contents along with minimal reduction in fruit size.

Effect of Application Rate of a Controlled Release Fertilizer on the Changes in Medium EC and Growth of Subirrigated Vinca and Salvia (저면관수 재배에서 완효성 비료의 양이 배지의 EC 및 일일초와 살비아의 생장에 미치는 영향)

  • Kang, Jong Goo;Lee, In Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Plug seedlings of vinca (Catharanthus roseus L. 'Pacifica Punch') and salvia (Salvia splendens F. Sellow ex Roem & Schult 'Maestro') were transplanted into square plastic pots (145 mL volume) filled with a soilless growing medium. To determine the effect of application rate on the growing medium EC and growth of plants, 0, 0.5, 1.0, 1.5, 2.0 and 4.0 g per pot of a controlled release fertilizer (14-14-14 Osmocote, 14N-6.2P-11.6K) were mixed with the growing medium. Plants were subirrigated daily with tap water. In both vinca and salvia, growing medium EC increased as application rate was elevated. Growing medium EC was relatively constant over a whole crop period when the application rate was less than 1.5 g per pot, while it decreased throughout the experiment at higher application rates such as 2.0 to 4.0g per pot in both species. The greatest leaf area, plant height, and shoot dry weight of vinca were obtained when plants were fertilized with 2.0 to 4.0 g per pot of the fertilizer, resulting in a growing medium EC of $1.0{\sim}1.7dS{\cdot}m^{-1}$ throughout the experiment. Leaf area, shoot dry weight, and chlorophyll content of salvia increased with elevated application rates. Leaf area, shoot dry weight, and chlorophyll content of salvia were the greatest when plants were fertilized with 4.0 g per pot, resulting in growing medium EC of $1.0{\sim}4.0dS{\cdot}m^{-1}$ throughout the experiment. Plant height of salvia was the greatest when plants were fertilized with 2.0 to 4.0g per pot. Concentrations of nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and sulfur (S) in the shoots of vinca increased, while concentration of calcium (Ca) decreased with elevated application rates. Concentrations of boron (B) and manganese (Mn) in the shoots of vinca increased as the application rate decreased.

Influence of Ca Fertilization on the Growth and Appearance of Physiological Disorders in Mother Plants and Occurrence of Daughter Plants in Propagation of 'Seolhyang' Strawberry through Soil Cultivation ('설향' 딸기의 토경 육묘에서 칼슘 시비가 모주의 생장, 생리장해 발현, 및 자묘 발생에 미치는 영향)

  • Choi, Jong Myung;Nam, Min Ho;Lee, Hei Soo;Kim, Dae-Young;Yoon, Moo Kyung;Ko, Kwan Dal
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.657-663
    • /
    • 2012
  • The Ca deficiency is a serious problem in the propagation of domestically bred 'Seolhyang' strawberry through soil cultivation. The objective of this research was to investigate the impact of the Ca containing fertilizers on the decrease of Ca deficiency symptoms and in the growth of mother and daughter plants. To achieve this, chemicals of 1.125 mM $Ca(OH)_2$, 0.375 mM $MgCl_2$, and 1.25 mM KCl were blended to contain the K:Ca:Mg (4:2:1) and the influence was compared to a commercial fertilizer, Azuro-Calma ($NO_3$-N 13%, $K_2O$ 1%, CaO 16%, MgO 6%), when those were applied as solutions with the electrical conductivity (EC) controlled to 0.6 or 1.0dS ${\cdot}m^{-1}$. During 120 days after transplant, the Azuro-Calma was more effective than the combined fertilizer in the reduction of mother and daughter plants on which Ca deficiency was appeared. The application of two Ca containing fertilizers resulted in the heavier fresh and dry weights of mother plants. The treatments of 1.0dS ${\cdot}m^{-1}$ of two fertilizers were more effective than those of 0.6dS ${\cdot}m^{-1}$. The combined fertilizer was also more effective than Azuro-calma on the growth of above ground plant tissue. The results in length, fresh and dry weight of runners occurred from a mother plants showed that the treatment of 1.0dS ${\cdot}m^{-1}$ of combined fertilizer was most effective followed by those of 1.0dS ${\cdot}m^{-1}$ of Azuro-Calma, 0.6dS ${\cdot}m^{-1}$ of combined fertilizer, 0.6dS ${\cdot}m^{-1}$ of Azuro-Calma, and control. The fresh weights of daughter plants were heavier in the treatments of Ca application than those in the control treatment, but the differences between 0.6dS ${\cdot}m^{-1}$ and control were not significant. The above results indicate that Azuro-Calma is more effective in decreasing plants showing the Ca deficiency symptoms. However, the combined fertilizer of K:Ca:Mg is more desirable when we are concerned about the decrease of crops showing Ca deficiency as well as increase of the growth in above ground plant tissue.