• Title/Summary/Keyword: controlled effect of temperature rising

Search Result 6, Processing Time 0.024 seconds

The Effect of Ground Granulated Blast-Furnace Slag on the Control of Temperature Rising in High Strength Concrete (고강도용 콘크리트의 온도상승 억제를 위한 고로슬래그 미분말의 효과)

  • 문한영;최연왕
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.195-204
    • /
    • 1998
  • Generally, in order to maintain high strength in concrete, it needs high cement content and low water-cement ratio.makes internal temperature rising after concrete placing inevitably, and happens temperature stress that makes initial cracks of concrete structure. Therefore, to control the thermal stress of high-strength concrete, we made 3 types of the fineness of ground granulated blast-furnace slag and 4 steps replacement. and then measured an amount of temperature rising and elapsed time of maximum temperature and strength of concrete. Also we considered the test results of heat evolution amount and heat evolution of cement paste made with 5 steps replacement by GGBF slag.As result of this study, in case of the 50% of replacement and the 6,000$\textrm{cm}^2$/g of fineness, we obtained satisfactory results that not only the controlled effect of temperature rising but strength at early ages.

An Experimental Study on the Quantification of Hydration Heat Evolution in Mass Concrete (매스콘크리트 수화발열 특성의 정량화를 위한 실험적 연구)

  • 이장화;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.238-242
    • /
    • 1994
  • Recently, construction of mass concrete structures except Dam are increased very often. Generation heat due to the hydrating reaction of mass concrete is generally larger than the heat released to the air, foundations and the exist structures. Therefore, internal temperature of mass concrete is remarkably risen and temperature gap between center and surface is extended by various effect. It this gap get large, the crack may be occurred. This crack must be controlled as little as possible to ensure the soundness and durability of structure. Firstly, Temperature rising history of Mass concrete is expected correctly to constrain the crack of mass concrete. So, objectives of this research is to quantify the effects of hydration temperature for the purpose of evaluating accurately the temperature history of mass concrete.

  • PDF

Effects of process variables on morphology of palladium metal deposit in hydrochloric acid medium

  • kim Min-Seuk;Lee Jae-Chun;Kim Won-Back;Jeong Jin-Ki;Nam Chul-Woo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.642-647
    • /
    • 2003
  • Palladium is widely used for several applications and recovery of palladium from secondary sources becomes increasingly important since palladium is one of maldistributed platinum group metals. Electrochemical recovery of dense palladium metal sheet from Pd leaching solution is a simple and easily controlled method. The surface morphology of the recovered Pd metal was significantly affected by current density and temperature. Dense deposit morphology was in higher stress state regardless of preparation condition under $55^{\circ}C$. Rising temperature up to $70^{\circ}C$ had a stress releasing effect besides densification of Pd deposit.

  • PDF

Experimental Analysis of Droplet Formation Process for Inkjet Printhead (잉크젯 헤드를 이용한 액적 토출 현상의 실험적 분석)

  • Jo, Y.M.;Park, S.J.
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.163-169
    • /
    • 2010
  • Jetting stability is the most important factors in inkjet printing because printing quality is totally determined by shape of the droplets on the substrate. In order to acquire stable jet, viscosity and dynamic behavior of the ink must be considered. In addition, waveform to drive the inkjet printhead is also to be controlled. In this study, the driving waveform composed of rising time, dwell time and falling time is optimized to obtain a stable jetting using drop watcher system. Also, effect of ink viscosity on jetting is experimentally investigated by changing the temperature of ink cartridge. As a result, jetted drop having uniform velocity is acquired.

Clinical Trial for the Heat-Rising Action of Ginseng and Cultivated Wild Ginseng to The Subject Diagnosed as Heat Pattern by Cold-Heat Patternization (한열변증을 통한 열증 대상자에 산양삼과 재배인삼의 상부 승열 작용에 대한 인체적용시험)

  • Yoo, Su-Jeong;Ko, Sung-Kwon;Kim, Hyeong-Jun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.30 no.4
    • /
    • pp.45-58
    • /
    • 2017
  • Objectives: The aim of this trial is to investigate the effect of Ginseng and Wild Cultivated Ginseng to Heat pattern subject. Methods: Eighty-nine Subjects were diagnosed as heat pattern by Cold-Heat Patternization and divided into Ginseng group (n=30), Wild Cultivated Ginseng group (n=31) and Placebo group (n=28) in their 1 st visit. In each visit, The researchers measured the subject's facial temperature using the infrared thermometer (Testo 835-T1). After that, The subjects were asked to mark the current score of flushing on the Visual Analogue Scale (VAS) and to complete the Chalder-Fatigue Scale (CFS) in each visit. The subjects took the test drug for one week and returned the remaining drug on the 2nd visit. The trial result was analyzed with one-way ANOVA using SPSS for Windows version 18. Results: 1. Systolic blood pressure was significantly lower in the Ginseng group and Wild Cultivated Ginseng group than in the control group (p=0.021). 2. There was no significant difference in facial temperature between each groups. 3. The current score of flushing showed the greatest decrease in the Ginseng group compared to the other groups but there was no significant difference (p=0.205). 4. The score of Chalder-Fatigue Scale was decreased in all groups but not statistically significant (p=0.180). Conclusions: This study showed that taking Ginseng extract and Wild Cultivated Ginseng extract do not affect to heat-rising reaction to the subjects diagnosed as heat pattern.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.